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Abstract

This study provides micro-level evidence on the labor market effects of historical au-

tomation technology by studying early 20th century powerloom adoption in Japan’s

silk-weaving industry. Relative to non-adopting factories in the same area, adopting

factories employed more male mechanics but did not reduce female weaver employ-

ment. Meanwhile, wages rose only modestly despite large productivity gains. At

the industry level, however, the exit of low-wage, low-productivity plants led to sub-

stantial net job losses—“technological unemployment”—and stronger overall wage

growth. Nature of the technology, monopsony power, and market competition were

all important in shaping these outcomes.



1 Introduction

Recent advances in automation technologies, including robotics and artificial intel-

ligence, have reignited debates about their effects on workers in the labor market.

Influential works frequently cite the displacement of hand spinning and weaving by

automated machines during the Industrial Revolution as the canonical example of

technological unemployment with deteriorating work conditions and pay (Acemoglu,

2002; Mokyr et al., 2015; Frey and Osborne, 2017; Acemoglu and Restrepo, 2019a,b;

Johnson and Acemoglu, 2023). Evidence for this iconic case, however, relies heavily

on anecdotal accounts or imprecise aggregate statistics (Bythell, 1969; Acemoglu

and Johnson, 2024), leaving a scarcity of micro-level quantitative evidence on early

industrial automation’s labor market impacts. Such evidence is crucial for estab-

lishing causality and illuminating mechanisms, such as distinguishing direct effects

on skill demand and wages within adopting firms from indirect effects mediated by

shifts in market competition and dynamics (Aghion et al., 2022).

This paper fills this gap by leveraging newly digitized plant-level panel data to

study the rapid adoption of powerlooms in the early twentieth-century silk-weaving

industry of Fukui Prefecture, Japan. Fukui’s silk-weaving sector flourished during

Japan’s Industrial Revolution through the export of a plain silk fabric known as

habutae, employing primarily young female adult weavers, a small number of child

trainees, and a few adult male mechanics. In the late 1900s, the industry under-

went a major technological transition—from handlooms to powerlooms—spurred by

electrification and improved domestic machinery, mostly in factories. Powerlooms

replaced female weavers’ manual tasks of operating handlooms with new tasks of

supplying and monitoring mechanized powerlooms, more than doubling their labor

productivity. To analyze the impact of this technological transition, we construct

an unbalanced, plant-level panel by exploiting records of 1,317 factories with ten or

more workers across 121 areas (towns or villages) in the Fukui Statistical Yearbook.

Our first step examines the plant-level effect of powerloom adoption by utiliz-

ing an event-study design that compares adopting and nonadopting plants within

the same local area (by controlling for area-year fixed effects). This analysis iso-

lates the impact on individual incumbent firms relative to their direct competitors,

abstracting from broader market dynamics like entry and exit. We find that power-

adopting plants substantially raised adult male employment by roughly 50% but

did not significantly change adult female or child employment or daily operation

hours. Moreover, adoption raised adult male and female daily wages by around

10%, whereas child wages showed insignificant declines. No discernible pre-trends

appear in event-study plots, and results are robust across various estimators and

sensitivity checks. We also discuss how the potential existence of spillover effects

could affect our results.

These plant-level estimates contrast sharply with sector-level time-series trends
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showing a 20–30% drop in female employment and an over 20% rise in average real

wages during the powerloom diffusion. To reconcile these findings, we examine how

powerloom adoption shaped market dynamics. Regressing area-level market struc-

ture measures on powerloom intensity—using two-way fixed effects, instrumental

variables (access to electricity stations), and long-difference specifications—reveals

that an increase in the power penetration rate is associated with a significant net

decline in the number of factories per area and a rise in market concentration.

Further analysis shows that exited factories in power-diffused areas tended to be

low-wage, low-productivity plants, while new power-adopting entrants paid notably

higher wages relative to their productivity. This market selection—net exit of low-

wage plants and entry of higher-wage ones—explains both the aggregate employment

decline and the pronounced sectoral wage growth.

Drawing on economic theory and historical documents, we interpret these results

as follows. First, the increased demand for male mechanics relative to other man-

ual workers indicates a skill-biased dimension of this technical change that favored

skilled workers who complemented machinery. Second, the absence of employment

declines for female weavers in powerloom plants—despite the elimination of manual

weaving tasks—reflects offsetting effects of displacement, reinstatement into new

tasks, and productivity gains on labor demand. Technological unemployment did

not arise within adopting plants because powerlooms still required a large manual

workforce with handloom-like skills, combined with substantial productivity bene-

fits. Third, rising female wages despite flat employment implies inelastic firm labor

supply curves. Alternatively, this pattern reflects limited rent-sharing: The ob-

served 10% wage gain represents a small pass-through of the 2–3 fold productivity

increases. Both views imply significant monopsony power, allowing employers to

capture most of the automation-generated surplus. Lastly, technological unemploy-

ment materialized indirectly through product and labor market competition: Ex-

panding powerloom factories pushed out low-wage, low-productivity competitors by

both intensifying product market competition and raising the labor costs required

to retain and attract workers.

Literature and Contribution. Our study contributes to the literature on how

historical technological changes shape labor markets through three perspectives.

First, we provide micro-level causal evidence on one of the Industrial Revolution’s

most iconic advances—automated weaving, supplementing the rich aggregate-level

findings.1 The main debate is whether Industrial Revolution–era technologies were

1Most existing studies rely on decennial census tabulations and link capital or power intensity
to labor market outcomes at aggregate levels (e.g., Goldin and Katz, 1998; Atack et al., 2004;
Gray, 2013; Katz and Margo, 2014; Lafortune et al., 2019; Atack et al., 2023). Some recent works
use instruments based on regional variations tied to natural resources or power facilities (De Pleijt
et al., 2020; Leknes and Modalsli, 2020; Gaggl et al., 2021; Fiszbein et al., 2020; Molinder et al.,
2021). Two notable exceptions are Chin et al. (2006), who leverage individual- and ship-level
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skill-biased, skill-replacing, or featured more nuanced, task-biased effects. Although

weaving automation has often been described as deskilling, our results show that it

was both skill-biased (for male mechanics), and displacing and reinstating (for female

weavers). This supports a flexible task-based perspective of technological changes,

in line with evidence from aggregate statistics (Gray, 2013; Katz and Margo, 2014;

Fiszbein et al., 2020), other historical contexts (Chin et al., 2006), and modern

automation (Autor et al., 2003, 2006; Acemoglu and Autor, 2011). The key lies

in which tasks the particular technology displaces and creates, and how different

worker skills match these tasks.

Second, our findings underscore labor-market frictions and monopsony power in

shaping the consequences of technological change. Most studies assume perfect labor

market competition and attribute wage or employment outcomes solely to changes

in factor marginal productivity. This view neglects the short-run struggles workers

face to secure their jobs and a fair share of the gains from new machinery.2 Instead,

recent studies find that disruptive, labor-saving technologies often provoked labor

unrest and conflicts (Caprettini and Voth, 2020; Molinder et al., 2021), indicating

employers’ power in the frictional labor market. Our results reveal an inelastic

labor supply faced by factories and limited rent-sharing, reflecting monopsony power

(Manning, 2003; Card et al., 2018), which dampened the potential employment and

wage gains from technological advances.

Third, our results highlight the roles of market dynamics and market competition

as key drivers of technological unemployment. While the displacement of hand spin-

ners and weavers during industrialization is often cited, little is known about how

this process unfolded at the factory and market levels. Recent studies of modern au-

tomation (Acemoglu et al., 2020, 2023; Aghion et al., 2023) show that displacement

often occurs not within adopting firms, where employees shift to new tasks (Dauth

et al., 2021; Battisti et al., 2023), but instead among less-productive competitors

forced out by product market competition (“business stealing”). Our findings cor-

roborate this pattern historically: Sectoral employment declined not through job

losses in adopting plants but through exiting of low-wage, low-productivity factories

driven out by intensified competition in product and labor markets.

2 Historical Background

Following the 1868 Meiji Restoration, the textile sector served as the cornerstone of

Japan’s early industrial transformation, much like in Britain’s first Industrial Rev-

data to study the shift from sail to steam in merchant shipping industry, and Feigenbaum and
Gross (2020), who track individual census records to study the displacement of female telephone
operators by mechanical switching.

2This omission is particularly striking given that historical labor markets were long characterized
by strong employer power and coercion (Acemoglu and Wolitzky, 2011; Delabastita and Rubens,
2022; Paker et al., 2025)
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olution. This led to the adoption of Western technologies and organizations, and

accounted for over one-third of manufacturing output until the 1930s. Within tex-

tiles, weaving constituted about 40% of total production, of which over one-third was

silk weaving. Our analysis focuses on the silk-weaving industry in Fukui Prefecture

during the 1900s and 1910s, where it dominated local manufacturing, accounting

for nearly 80% of total output and employment. Over 95% of Fukui’s silk-weaving

production was a plain silk fabric, habutae, largely exported to Western markets. By

this period, Fukui had become Japan’s largest habutae-producing district, supplying

over one half of the national output. Figure 1 presents key statistics on Fukui’s silk

weaving industry between 1905 and 1914, drawing on the Fukui Statistical Yearbook.3

Around the turn of the twentieth century, Fukui’s weaving industry underwent

two major transformations. The first was organizational: a shift from home pro-

duction (under the putting-out system) to factory-based production. The second,

our main focus, was technological: a rapid transition from handlooms to power-

looms. Although often treated as concurrent in the literature, in Fukui the organi-

zational transformation preceded mechanization: By the mid-1900s, nearly one half

of Fukui’s weaving workforce was already in factories with ten or more workers, and

subsequent powerloom diffusion occurred predominantly within these “disciplined”

factories. Figure 1a illustrates this diffusion: Between 1905 and 1914, the number of

powerlooms rose from near zero to over 7,000, while handlooms declined from more

than 10,000 at their peak to around 2,000 by 1914. By 1914, over 70% of factories

had adopted powerlooms. Historians commonly attribute this swift transition to

access to electricity and domestic powerlooms.4 This fast adoption within organized

factories offers an ideal context for identifying its labor market impact, minimizing

confounding shifts.

Powerlooms substantially altered production processes and worker tasks. During

this period, distinct tasks were carried out by different demographic groups. Adult

women formed the core workforce, operating hand-and-foot-driven looms to weave

raw silk threads into fabric. Child workers constituted roughly 20% of the workforce,

assisting with simple preparatory tasks until they reached weaving age.5 Adult men,

fewer than 10% of workers, primarily performed engineering tasks.6 Under handloom

production, each female weaver operated a single loom, executing routine manual

steps in shuttle manipulation, warp regulation, and weft beating. Powerlooms auto-

3Appendix A provides a more detailed description of the historical context.
4See Kandachi (1974); Minami et al. (1982, 1983); Makino (1984); Saito and Abe (1987);

Kiyokawa (1995); Hashino (2012); Hashino and Otsuka (2013).
5A heavy reliance on female and child labor was also prevalent in British and American textile

industries during early industrialization, typically as cheap, idle, and unskilled labor (Goldin and
Sokoloff, 1982; Humphries and Schneider, 2019). Inoue (1913) instead attributes women’s preva-
lence in silk weaving to their superior finger dexterity and patience with delicate work compared
to men.

6Noshomusho (1903): “Male workers in weaving factories are generally limited to pattern de-
signers and machine operators (who set up looms and repair equipment).”
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mated these routines, freeing weavers to handle resupplying threads, knotting bro-

ken threads, and monitoring machine function. This allowed one worker to manage

two or more powerlooms, breaking the nearly one-to-one relationship between the

number of handlooms and female workers (Figure 1a). Despite being less routine,

these new tasks required comparable or greater dexterity and attentiveness, draw-

ing on many of the same skills used in handloom weaving.7 Contemporary reports

indicate a two- to threefold increase in labor productivity through faster machine

speeds and multiple looms per worker, consistent with our calculations in Figure 1c

showing annual habutae output per worker rising from 30 to 80 pieces.8 Powerloom

adoption also created new tasks for adult men—installing and maintaining power

machinery—that required specialized skills.9

The labor supply of female workers in silk-weaving factories drew heavily from

nearby peasant families, yielding segmented local labor markets within Fukui.10

Labor turnover was high at the plant level, because most female workers were young

and unmarried, seeking temporary employment before marriage, and remaining only

a few years.11 Factory owners commonly imposed obligation periods into labor

contracts to deter departures and formed associations to curb poaching, though

such agreements were not always binding.12 Some also opened branch facilities in

rural areas to secure additional, low-cost workers. Typically, female weavers were

paid on a piece-rate basis, while men and child workers received daily or monthly

wages. As shown in Figure 1d, adult males consistently earned about 20% more

than adult females, and child workers received less than one half the adult rate.

3 Data

The Statistical Yearbook published by Fukui Prefectural Government provides an-

nual data on factories with ten or more workers between 1904 and 1919. It reports

7Inoue (1913) notes that reconnecting broken silk threads demanded significant dexterity; work-
ers trained on handlooms adapted better to powerlooms—a point often overlooked by short-sighted
employers.

8Fukui Prefecture (1911) and Inoue (1913) estimate a worker with one handloom could produce
3–4 pieces (biki) of fabric per month, whereas operating two powerlooms yielded 14–16 pieces.
Sanbe (1961) similarly finds that moving from one handloom to two powerlooms increased daily
output of a worker from 1.5 to 4 rolls (tan). See also Okazaki (2021) for comparable estimates
from production function estimations.

9Inoue (1913) observes that new “mechanical workers” were introduced alongside powerlooms
to handle lubrication, repairs, and overall machine management, often drawn from graduates of
local industrial training institutes.

10Fukui City (1994) and Fukushima Prefecture (1910) report that by the late 1900s, most female
workers were commuting from nearby areas. Kandachi (1974) finds that most workers in Harue
Village of Sakai County, a local weaving center, came from within the village or neighboring villages
in the same county.

11Noshomusho (1903) reports that more than 90% of female workers were under 25 and had
tenure under 5 years in 1901.

12Inoue (1913) notes that poaching occurred mainly when orders were high and the labor supply
was short, and was achieved by luring skilled workers with higher wages.
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plant specifics including plant name, location, owner’s name, foundation year, major

product, power source, daily operating hours, and, from 1913 onward, production

values. It also records the number of male/female/child workers and their average

daily wages. Adult workers were defined as those over 14 years until 1914, and

over 15 years from 1915 onward. We hence focus on 1904–1914 to avoid both this

definitional change and the World War I boom. We identify silk-weaving plants as

those producing habutae or other silk fabrics. Among these, any plant reporting

inanimate power use is classified as a “powerloom” plant, and others as “handloom”

plants. Although steam and gas occasionally appeared, about 90% of power sources

were electrical.

To construct our plant-level panel, we link plants across years using plant name,

owner’s name, location, and foundation year.13 This yields 1,317 distinct plants and

4,622 plant-year observations spread across eight counties (including Fukui city) and

121 distinct areas (towns or villages).14 The panel is unbalanced, with extensive en-

tries and exits and an average of 3.5 observation years per plant. We define a plant’s

entry (exit) year as the first (last) year it appears in the data. Among 382 plants re-

porting power use in at least one year, only 133 appear initially with power (powered

entrants), indicating most adoption occurred in incumbent handloom factories.15

4 Plant-level Analysis

We now investigate how powerloom adoption affected factory labor use and wages

using event study and Difference-in-Differences (DiD) approaches. Our comparison

contrasts adopting (treated) and nonadopting (non-treated) plants within the same

local area (town or village), which presumably share similar labor demand and

supply shifters aside from the new automation technology. For this exercise, we

exclude 38 plants that discontinued power use after initially adopting it (treatment

discontinuation) and 133 plants that entered the dataset already powered (no pre-

treatment observations).

Specification. Let Yiat denote the outcome (e.g. log employment, log average

wages, or plant working hours) for plant i in area a at time t. Our event study

13Given possible documentation errors, we use a fuzzy-matching strategy. Plants in different
years are treated as identical if they share the same location and at least two of the other three
identifiers.

14We dropped 2 counties (Onyu, Oi) where the habutae industry was minimal. See Table A7 for
summary statistics.

15Although some entries (exits) may reflect plants moving above (below) the 10-worker threshold,
we find over two-thirds of these 133 list a foundation year matching or near their dataset entry
year, suggesting that our entry measure reflects genuine plant start-up.
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specification is:

Yiat =
−2∑

k=−10

γk1 {t−Gi = k}+
5∑

k=0

γk1 {t−Gi = k}+ αi + δat + ϵit. (1)

where Gi is the first year plant i adopted power, αi is a plant fixed effect, and δat

is an area-by-year fixed effect. Coefficients γk capture the dynamic effects pre- and

post-event, relative to the year −1 (which is normalized to zero). The area-by-year

fixed effects control for unobserved shocks common to all factories in the same local

area. Identification of the average treatment effects of treated requires that changes

in Yiat at nonadopting plants within area a provide a valid counterfactual for changes

at adopting plants, i.e. the parallel trends assumption.16 Because conventional two-

way fixed effects (TWFE) estimators can incorporate undesired comparisons across

different treatment cohorts, we use the Sun and Abraham (2021) estimator that

explicitly utilizes never-treated and last-treated (1914) cohorts as the control groups.

For completeness, we also report TWFE estimates from a pooled DiD specification:

Yiat = γDit + αi + δat + ϵit, (2)

where Dit is an indicator for being in the post-adoption period. This collapses all

post-event dynamic effects into a single treatment effect, γ. Throughout, standard

errors are clustered by plant.17

Results. Figure 2 plots the event-study estimates of γk for four periods before and

after power adoption. Following powerloom adoption, male adult employment rises

significantly: about 0.2 log points at the year of adoption, rising to 0.4 log points

since the second year. Since treated plants employ 3.3 adult males on average

before adoption, this translates into roughly 1.6 additional adult male workers one

year after adoption.18 In contrast, adult female employment remains essentially

unchanged, with coefficients near zero apart from a small negative effect at the

adoption year. Hence, replacing handlooms with powerlooms did not reduce the

main workforce (averaging 21.4 adult females per plant pre-treatment) relative to

16Note that this assumption does not require the adoption to be exogenous and free of selection.
In fact, adopting plants tend to have larger employment, on average (Figure A4b), mirroring
modern results that larger, more productive firms are more likely to adopt automation robots (Koch
et al., 2021; Acemoglu et al., 2022). As discussed in the theoretical framework in Appendix C, this
selection is consistent with more efficient firms facing higher marginal labor costs, thus benefiting
more from labor-saving technologies.

17All main findings are robust to clustering at the area level instead.
18We exclude plant-year observations with zero male workers from the log specification, so a

shift from zero to a positive number is not captured. In a levels specification (zero observations
retained) the estimated increase is two adult male workers, though that relies on parallel trends in
levels, which can overstate the effect if the control group employs fewer male workers (Roth and
Sant’Anna, 2023). A Poisson approach, which maintains a growth parallel-trend assumption and
includes zeros, closely matches the log-employment results; see Appendix Table B1.
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nonadopters. For child workers (6.8, on average, pre-treatment), coefficients are

negative, but not statistically significant, in some post-treatment years. Operation

hours also remain unchanged, hovering around 11.3 hours per day both pre- and

post-treatment. Overall, the salient difference is a rise in male adult employment,

with neither female employment nor operating hours systematically affected.

Turning to wages, Figure 2 indicates that both adult male and adult female

log wages rise by about 0.05 log points in the adoption year, reaching roughly 0.1

log points from the second year onward. These parallel increases are statistically

significant for most post-adoption periods. By contrast, child wages show a roughly

0.1 log point decline, yet only the immediate adoption-year estimate is significant

due to larger standard errors in subsequent years. Hence, powerloom adoption is

associated with a 10% wage gain for adult workers compared to their counterparts in

non-adopting factories, while children experience no wage gains and possibly wage

losses.

Table 1 corroborates these patterns and shows additional outcomes (plant over-

all employment and daily wage bills) using the DiD specification in Equation 2,

which provides a single coefficient summarizing the treatment effect. The estimated

coefficients are 0.33, 0, and -0.11 for adult male, adult female, and child employ-

ment, respectively, and 0.07, 0.07, and -0.04 for their average wages. Only adult

male employment and the two adult wage coefficients are statistically significant.

In addition, overall plant-level employment has a small positive but insignificant

coefficient (0.04), reflecting the fact that the increase in male workers is modest

relative to the stable female workforce. Average plant wages rise in line with adult

wages. Finally, adult male wage bills (a product of employment and daily wages)

increase by about 0.4 log points, while adult female wage bills increase by only 0.07

log points (not statistically significant). Total wage bills rise by 0.12 log points.

Given the substantial capital costs of powerlooms, this implies a likely decline in the

labor share of value added.19

Robustness. Our event-study plots reveal minimal evidence of pre-trends, sug-

gesting that treated and control plants followed parallel paths (conditional on area-

by-year fixed effects) prior to adoption. To further verify the parallel-trends as-

sumption, we employ the sensitivity methods of Rambachan and Roth (2023), which

assess how vulnerable our estimates are to potential parallel trends violations. The

robustness checks in Figures B3 and B4 show that to overturn our significant post-

treatment estimates, parallel-trend violations would have to exceed either the maxi-

mum observed pre-treatment deviation or the magnitude of the estimated treatment

effects themselves.

We also verify the event-study findings using alternative estimators. Besides

19Table A4 shows a contemporary business accounting that compares handloom and powerloom
operations and corroborates this finding.
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our baseline approach (Sun and Abraham, 2021), we implement the procedures of

Callaway and Sant’Anna (2021), De Chaisemartin and d’Haultfoeuille (2020), and

Borusyak et al. (2021), as well as a standard TWFE regression (Figure B2). All

yield similar results, suggesting the “negative weights” issue in staggered adoption

is limited here, consistent with only moderate post-treatment dynamics. It also

validates the simple TWFE estimator used in the pooled DiD specification.

Interpretation. We now interpret our plant-level findings through the lens of

economic theories. A full theoretical account can be found in Appendices C and D.

First, relative to non-adopting, surviving competitors, powerloom adoption sub-

stantially increases the employment of adult male mechanics but leaves female and

child employment unchanged. This pattern aligns with skill-biased (or routine-

biased) technological change, as the new technology increases demand for skilled

workers performing nonroutine mechanical tasks relative to routine manual labor.

Although technological change during early industrialization is often portrayed as

“deskilling” (Goldin and Katz, 1998; Acemoglu, 2002), our results complement other

recent studies (Chin et al., 2006; Katz and Margo, 2014; Fiszbein et al., 2020) in

highlighting a simultaneous upskilling dimension. The concentrated effect during

the first two years of adoption is also consistent with the idea that skilled labor

demand manifests most during the implementation of new technologies (Greenwood

and Yorukoglu, 1997).

Second, the fact that female weavers are neither displaced nor in greater demand,

despite a more than twofold increase in their productivity, can be well accounted

for by offsetting effects in a task-based framework (Acemoglu and Restrepo, 2018,

2019a,b). On one hand, powerlooms completely automate the manual tasks of oper-

ating handlooms, reducing demand for female weavers (“displacement effect”), but

on the other hand, they create new tasks of managing multiple powerlooms that the

same workers can perform (“reinstatement effect”), and boost output per worker

(“productivity effect”), both raising demand for female workers. When these effects

are all sizable yet offset each other, the net change in labor demand can remain

minimal even as average labor productivity significantly rises, reducing labor share,

as observed in our case.

Third, the contrasting pattern of stable female employment but rising female

wages implies that individual factories faced an inelastic labor supply. Under a per-

fectly competitive labor market with an infinitely elastic labor supply, an increase in

a plant’s labor demand would raise employment but not wages, resulting in no wage

response observed from the event-study analysis. Instead, labor market frictions

and monopsony power can yield the observed outcome, an interpretation consistent

with historical accounts of limited mobility among female workers. By contrast,

the adult male labor supply appears more elastic, as reflected in the larger rise in

employment than wages, which is intuitive given their small overall presence in the
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silk weaving industry.

Fourth, female weavers’ wage gains can also be viewed as rent sharing. A simple

calculation for doubled or tripled productivity but only a 10% wage increase suggests

a pass-through rate of 5–10%, aligning well with the lower bound of the estimates

in the rent-sharing literature (Card et al., 2018). Clear evidence of this low pass-

through also comes from archival sources noting that piece rates for powerloom

weavers were set at roughly half those for handloom weavers within the same year

and factory (Fukushima Prefecture, 1910; Inoue, 1913; Fukui Prefecture, 1994). This

illustrates that employers captured much of the automation-generated surplus.

Fifth, compensating differentials provide another possible explanation for wage

increases if powerlooms changed working conditions. Yet we find no difference in

operation hours between powerloom and handloom plants, and it was noted that

young women preferred powerloom work for less physically demanding tasks and

higher pay (Inoue, 1913). If anything, compensating differentials would have reduced

wage gains rather than inflated them.

Lastly, even with pre-treatment parallel trends, treatment-induced equilibrium

spillovers onto the control group can violate the stable unit treatment value as-

sumption (SUTVA) required for valid post-treatment comparisons. Imperfect labor

market competition, as discussed, makes such spillovers a relevant concern. While a

direct estimation presents challenges, economic theory can help predict their signs

and magnitudes (Minton and Mulligan, 2024). Berger et al. (2022) show that under

an oligopsonistic market framework, one firm’s increased labor demand can lead

competing firms to reduce employment but raise wages, and the magnitude of these

spillovers hinges on each firm’s labor supply elasticity. Our DiD estimates of no net

rise in female adult employment suggest minimal employment spillovers; otherwise,

the estimated effect would likely be positive. In contrast, wage spillovers for adult

females are more plausible and may cause us to underestimate the wage gains from

powerloom adoption. For adult males, a higher labor supply elasticity likely tempers

such spillovers. An event study using area-level adoption on non-adopting plants

finds small yet significant spillovers only for female wages, aligning with these the-

oretical predictions (Figure E1). Thus, concerns about spillovers do not materially

alter our discussions above. Nevertheless, because our analysis focuses on adopt-

ing and non-adopting plants that survived, it does not capture another potential

spillover channel—plant exit—which we examine in the next section.

5 Market Dynamics

Our plant-level findings show that powerloom adoption raises male employment and

leaves female employment unchanged, yet aggregate statistics reveal a decline in fe-

male employment coinciding with the diffusion of powerlooms (Figure 1a). Moreover,
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the sector-level wage in Figure 1d rises more sharply than our plant-level estimates

suggest. The missing piece that can reconcile this discrepancy is likely market dy-

namics. Figure 1b shows a marked reduction in the number of silk-weaving factories

soon after powerlooms spread, implying that market selection may drive both em-

ployment decline and stronger sectoral wage growth. In this section, we show that

local areas experiencing faster power adoption underwent greater net exit and rising

market concentration. This pattern was driven primarily by the exit of low-wage,

low-productivity plants, whcih is attributable to intensified competition in product

and labor markets.

Impact on Market Structure. To study how powerloom adoption affected mar-

ket structure, we estimate variants of the specification:

Yat = µEat + αa + δt + ϵat, (3)

where Yat are measures of market structure at the area level, including the number of

factories, Herfindahl-Hirschman Index (HHI), three-firm concentration ratio (CR3),

and yearly exit rate. We define Eat ≡
∑

i∈a sitDit as employment-weighted power-

adoption intensity in area a, where sit is the employment share of plant i in area

a. We now include all plants in the panel, including the power discontinuers and

powered entrants excluded from the plant-level analysis. Area fixed effects αa and

year fixed effects δt absorb time-invariant area characteristics and common time

shocks. The key coefficient µ captures the net effect of all power intensity changes,

which arises mainly from three events: powered entrants, exit of non-adopters, and

adoption by incumbents.20 A potential threat to identification is the presence of

unobserved factors affecting both power adoption and market structure, such as local

shocks in product demand or labor costs. To address this, we employ two additional

strategies. First, we instrument for area-level power intensity Eat using access to

newly launched electricity stations. Over the sample period, four stations began

operation at different locations, each covering a specific set of areas. Construction

typically spanned two to three years and was subject to delays, making the timing

plausibly exogenous to local market shocks. Second, we estimate a long-difference

version of Equation (3), replacing Yat and Eat with the differences between average

values in the early (1904–1906) and late (1912–1914) periods. This specification

focuses on longer-run variation, filtering out any confounding shorter-run market

fluctuations. For all specifications, standard errors are clustered at the area level.

Table 2 Panel A reports the baseline OLS estimates of Equation (3). A shift

in area power intensity from 0 (no adoption) to 1 (full adoption) is associated with

20Although changes in incumbent plants’ employment and other events such as nonpowered
entrants and powered exits can also affect intensity, these variations are either small or scarce in
practice.

11



a net reduction of 1.1 plants (from a pre-treatment average of 5.3) and increases

in HHI and CR3 of 0.07 and 0.08 (from 0.44 and 0.62), respectively, all statisti-

cally significant. For area exit rate, we add a quadratic intensity term to capture

non-monotonicity; the estimated coefficients are 0.29 (linear) and -0.38 (quadratic),

both significant, indicating exit rises with power intensity initially but declines at

higher intensities.21 Panel B and C present IV and long-difference estimates for the

number of plants and concentration measures. These estimates point in the same

direction but are larger in magnitude: For instance, the coefficient on the number of

plants is -2.6 in the IV specification and -1.5 in the long-difference, each statistically

significant. This suggests that some of the OLS variation may reflect confounding

market forces operating in the opposite direction, while the larger IV coefficients

may capture local average treatment effects associated with electricity introduction.

Overall, these findings suggest that areas with greater powerloom adoption expe-

rienced net factory exit and higher market concentration relative to nonadopting

areas. Since areas averaged about five plants before adoption and reached about

0.7 power intensity by the final year, the exit of one or two plants can account for

much of the 20–30% aggregate employment decline observed in Figure 1a.22 We

next examine the characteristics of exiting factories to understand the mechanics of

this market restructuring.

Characterizing Exit, Entry, and Competition. To understand which factories

exited the market and why, we compare the wage and labor productivity distribu-

tions of exited plants, surviving plants, and power-adopting entrants. Exit, survival,

and entry are defined annually, with exit or survival referring to a plant’s status in

the following year. We classify each area-year as “adopting” if any local plant re-

ports power use, and “nonadopting” otherwise. Figure 3a pools data from 1907

to 1913 (the period of rapid diffusion) and shows real wage distributions for these

three groups in adopting versus nonadopting areas. In nonadopting areas, exited

and surviving plants display similar wage distributions. By contrast, in adopting

areas, surviving that plants’ wage distribution shifts rightward relative to exits,

suggesting lower-wage establishments are disproportionately driven out. Moreover,

power-adopting entrants in these areas exhibit a distribution further to the right,

implying that they pay substantially higher wages than incumbents. Figures E3 and

E4 confirm these patterns for individual years.

Figure 3b replicates this analysis for labor productivity in 1913—the only year

21The estimated quadratic relationship implies that the exit rate peaks at an area power intensity
of −(0.29)/(2×−0.38) ≈ 0.38, higher than the sample mean power intensity of 0.26.

22A potential concern is cross-area spillovers and a “missing intercept” issue. If nonadopting
areas also experienced net exit due to inter-area competition, we might understate the local effects
of adoption on market structure. Although such effects may help account for some of the sector-
wide changes, comparing aggregate trends with our estimates suggests that these spillovers are
relatively small, implying more intense within-area than between-area competition.
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with both production values and entry/exit records. Although surviving plants have

more right-skewed productivity than exits in both nonadopting and adopting areas,

the gap is again larger in adopting areas. Notably, adopting entrants display a

productivity distribution similar to that of survivors, suggesting their higher wages

cannot be justified by productivity differences but indicate the existence of wage

premiums. This again aligns with frictional labor-market theories, in which firms

offer higher wages to attract workers. Taken together, the spread of powerlooms

appears to induce strong selection, eliminating low-wage, low-productivity firms

while admitting new entrants that pay elevated wages. This market-wide selection

explains both why the drop in overall market employment occured and why market

wages rose faster than our plant-level estimates indicate.

Historical accounts suggest that both product-market and labor-market compe-

tition contributed to these dynamics. Although habutae was largely a homogeneous

export product, it varied in quality and was often sold as local brands by local asso-

ciations. Powerloom production required higher-quality raw silk and produced more

uniform, higher-grade goods (Fukushima Prefecture, 1910; Fukui Prefecture, 1994).

As a result, expanding powerloom output likely eroded profits at smaller handloom

factories through local monopolistic competition. Simultaneously, wage increases

at power-adopting plants, especially among new entrants, put upward pressure on

wages at handloom factories via oligopsonistic competition or higher workers’ out-

side options. Less productive firms unable to match these higher wages could lose

workers and ultimately exit. Contemporary sources confirm this pressure: “since

powerloom diffusion, active recruitment is limited to handloom factories, which pay

lower wages for more laborious work” (Inoue, 1913), and “handloom female weaver’

wages could not possibly match those of powerloom operators” (Fukushima Prefec-

ture, 1912).

6 Conclusion

Recent studies of modern automation often cite the mechanization of spinning and

weaving during the Industrial Revolution as a classic example of technological un-

employment, despite limited quantitative evidence. Exploiting a newly constructed

plant-level panel dataset, this paper examines the rapid adoption of powerlooms in

early twentieth-century Japan’s silk-weaving sector and finds a more nuanced reality

than standard accounts suggest. Although powerlooms automated handloom oper-

ation, displacing female weavers’ core tasks, adopting factories did not reduce their

female workforce. Instead, female workers were reinstated to newly created tasks of

monitoring powerlooms, and additional adult male mechanics were hired to install

and maintain power machinery. These surviving female weavers experienced wage

gains, but these gains were modest relative to the surge in productivity, indicating

13



limited rent-sharing and strong employer power. Moreover, overall industry em-

ployment declined significantly as low-wage, low-productivity factories exited under

intensified product and labor market competition. These findings underscore that

the nature of technology, monopsony power, and market dynamics all play critical

roles in shaping the labor market impact of automation technologies.
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Figure 1: Trends of Fukui’s Silk-weaving Industry
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Note: All figures here use the data from the Fukui Prefecture Statistics Yearbook. The aggregate
statistics of total machines and workers in Panel a and total number of plants in Panel b are for all
factories in the silk-weaving industry of Fukui and are directly available in the statistics book. The
Statistics Yearbook defines “factory” as any plants employing 10 or more workers, whereas plants
with fewer workers are defined as home producers, whose trends are shown in Figure A2. The
numbers of female and male workers in Panel a include both adult (older than 14 years old) and
child workers. The production values in Panel b and the habutate export quantity in Panel c were
also directly from the Statistics Yearbook, but they aggregate all types of business units and thus
include the production of not only factories but also home producers and putting-out producers.
The labor productivity in Panel c is calculated by dividing the total export habutate quantity
by the total export habutate production workers. The real average daily wage in Panel d is not
directly documented but calculated using the plant micro data collected from the same Statistics
Yearbook. The wage is weight by plant employment and inflation-adjusted using the national price
index published by Bank of Japan, with the year 1904 as the benchmark year.
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Figure 2: Plant-Level Impacts of Power Adoption on Employment and Wage
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Note: This figure presents the results of the event-study specification in Equation (1) for various
plant-level outcomes. Dots represent the estimated coefficients γk for each lead and lag event-time
dummy relative to powerloom adoption, and error bars show 95% confidence intervals based on
standard errors clustered at the plant level. Each regression includes plant fixed effects and area-
by-year fixed effects. The estimation follows Sun and Abraham (2021), using never-treated plants
and last-treated (1914) cohorts as control groups.22



Figure 3: Wage and Productivity Distributions of Exited and Surviving Plants in
Nonadopting versus Adopting Areas
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Note: Panel a shows the distributions of real daily wages for plant-year observations from 1907
to 1913, deflated to 1904 levels using the Bank of Japan’s national price index. Each area-year is
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Table 1: The Plant-Level Effect of Power Introduction on
Employment and Wages

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Effect on Ln(Employment)
Power 0.329 0.000 -0.110 0.047

(0.071) (0.050) (0.117) (0.043)
Pre-treatment Mean 3.33 21.42 6.76 28.24
N 2,171 3,484 2,068 3,488
Panel B: Effect on Ln(Operation Hours)
Power 0.008

(0.007)
Pre-treatment Mean 11.30
N 3,485
Panel C: Effect on Ln(Daily Wages)
Power 0.071 0.071 -0.044 0.076

(0.020) (0.016) (0.037) (0.016)
Pre-treatment Mean 24.90 19.93 11.61 19.27
N 2,167 3,483 2,035 3,488
Panel D: Effect on Ln(Wage Bills)
Power 0.401 0.072 -0.111 0.123

(0.077) (0.053) (0.126) (0.048)
Pre-treatment Mean 83.59 429.13 80.69 540.17
N 2,167 3,483 2,035 3,488

Note: This table reports DiD estimates (γ) from Equation (2) for var-
ious plant-level outcomes. Panel A considers log employment, Panel B
operation hours, Panel C log average wages, and Panel D log wage bills
(employment multiplied by average daily wage), each by worker cate-
gory. The unit of observation is a plant-year. “Pre-treatment mean”
refers to the average of the dependent variable in levels (non-logarithmic
units) for eventually treated plants prior to adoption. Observations with
missing or zero values for the outcome are excluded. All specifications
include plant fixed effects and area-by-year fixed effects. Standard er-
rors are clustered at the plant level and reported in parentheses.
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Table 2: The Area-Level Effect of Power Introduction on Market
Structure

(1) (2) (3) (4)
# of Plants HHI CR3 Exit Rate

Panel A: OLS
Area Power Intensity -1.076 0.073 0.083 0.289

(0.328) (0.037) (0.032) (0.127)
Area Power Intensity2 -0.380

(0.125)
Pre-treatment Mean 5.32 0.44 0.62 0.18
N 941 941 941 941
Panel B: IV
Area Power Intensity -2.648 0.333 0.323

(1.269) (0.098) (0.107)
First-stage F 102.73 102.73 102.73
Pre-treatment Mean 5.32 0.44 0.62
N 941 941 941
Panel C: Long-difference
Area Power Intensity -1.512 0.134 0.124

(0.651) (0.071) (0.069)
Pre-treatment Mean 4.93 0.51 0.67
N 81 81 81

Note: Panel A reports OLS estimates (µ) of the two-way fixed effects specifica-
tion (TWFE) in Equation (3), regressing market-structure outcomes on area-level
power intensity. Area power intensity is defined as the employment-weighted av-
erage of plant-level power indicators within each area and year. Panel B shows
IV estimates using an indicator of power-station availability as an instrument for
area power intensity. Panel C presents long-difference estimates, where both the
outcome and power-intensity variables are replaced by their differences between
the average values in early period (1904–1906) and the late period (1912–1914).
“Pre-treatment mean” is the average of the dependent variable for adopting areas
prior to adoption. All regressions include area and year fixed effects, and standard
errors (in parentheses) are clustered by area.
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Online Appendices

A Historical Background: More Detail

This section provides additional historical context on the silk-weaving industry in

Fukui, Japan during the early twentieth century.

General Background. Japan’s transformation from a feudal society to a global

industrial power began following the Meiji Restoration of 1868, which catalyzed the

adoption of Western technologies and institutions. This period marked a signifi-

cant economic acceleration, with real GDP per capita growth rising to 1.68% during

1870–1920 from just 0.19% in 1820–1870 (Maddison Historical Statistics). Manufac-

turing’s share of overall economic production more than doubled during this period,

underscoring industrialization’s central role in Japan’s modern economic growth.

Mirroring Britain’s earlier industrialization pattern, the textile industry served as

the cornerstone of Japan’s industrial transformation, accounting for over 30% of to-

tal manufacturing output between 1880 and 1930 (Figure A1a). The textile industry

comprised two principal subsectors: thread production (silk reeling and cotton spin-

ning) and fabric production (silk and cotton weaving). The weaving industry alone

contributed 39% of textile production and 12% of total manufacturing output in

1909, rising to 42% and 13%, respectively, by 1914 (Table A1).

The early twentieth century witnessed profound organizational and technological

transformations within Japanese manufacturing, particularly in the weaving indus-

try. Factories—defined in official Japanese statistics as plants employing 10 or more

workers—proliferated during this period. In 1905, only 12.3% of weaving workers

were employed in factories (Table A2), but by 1914, this proportion had more than

doubled to 26.7%, highlighting the sector’s rapid industrialization. Concurrent with

this organizational transition was a marked technological shift as powerlooms be-

came increasingly prevalent. The ratio of powerlooms to total looms (including both

powerlooms and handlooms) rose from merely 2.6% in 1905 to 20.5% by 1914 (Fig-

ure A1b). This percentage was substantially higher within factories, suggesting a

strong complementarity between factory-based production systems and mechaniza-

tion.

Fukui and habutae. Among Japan’s exported silk fabrics in the late 19th and

early 20th centuries, the most prominent product was a plain silk fabric called

habutae.23 While the earliest export attempts occurred in the Kiryu area of Gunma

23The name is believed to derive from either “bird feathers layering” or “two warps layered like
feathers.”
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Figure A1: Trends of Industrial Output and Mechanization in Weaving
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Table A1: Composition of Sector Production in Early 20th Century Japan

A. Japan Total B. Fukui Prefecture
Year 1909 1914 1909 1914
Agriculture 1,314,000 1,549,000 13,543 15,672
Manufacturing total 1,970,203 2,552,945 28,800 32,181
Textile 619,617 830,482 23,976 26,514
Weaving 265,331 326,467 22,399 26,514
Silk 100,234 102,482 21,116 24,821
Habutae 38,599 39,636 20,412 23,777
Mixture of silk & cotton 26,233 25,543 317 547

Cotton 116,412 150,386 303 333

Sources: Data on the Japan total are from Umemura et al. (1966), and Shinohara (1972), pp.142-
143. Data on the Fukui Prefecture are from Statistical Yearbook of Fukui Prefecture, 1909 and
1914 issues.

27



Table A2: Number of Workers in the Weaving Industry by Type
of Production Organization

A. National B. Fukui Silk-
Weaving Industry weaving Industry

Organization Type 1905 1914 1905 1914

Total 772,858 630,675 24,031 11,934
(100.0%) (100.0%) (100.0%) (100.0%)

Factory 94,964 168,653 9,063 8,041
(12.3%) (26.7%) (37.7%) (67.4%)

Home Workshop 230,864 178,487 12,828 2,398
(29.9%) (28.3%) (53.4%) (20.1%)

Putting-out System 447,030 283,535 2,140 1,495
(57.8%) (45.0%) (8.9%) (12.5%)

Sources: National data: Ministry of Agriculture and Commerce, Nōshōmu
Tōkei Hyō (1905-14); Fukui data: Compiled from Fukui Prefecture statis-
tics.
Note: Production organizations are defined as follows: Factory refers to es-
tablishments with 10 or more workers (including family members); Home
Workshop includes smaller operations with fewer than 10 workers; and
Putting-out System encompasses both thread suppliers who provided ma-
terials to outworkers and outsourcing weavers who produced fabrics in their
own home.

Prefecture in the late 1880s, Fukui Prefecture quickly emerged as the principal center

of habutae weaving, eventually establishing itself as a major hub for this specialized

export textile. Fukui’s success in developing its habutae weaving industry has been

attributed to its adoption of Western-style “pattan” looms, which are well-suited for

habutae weaving, and to its product inspection system—first implemented by local

guilds and later by the prefectural government—which ensured consistent quality

(Fukui Prefecture, 1994). As shown in Table A1, by the first decade of the 20th

century, Fukui accounted for 53–60% of Japan’s national habutae production and

21–24% of national silk production. Silk and habutae weaving dominated Fukui’s

industrial landscape, with more than 70% of the prefecture’s manufacturing output

being silk fabric, of which over 96% was habutae.

As the national center for habutae weaving and export, Fukui also spearheaded

an organizational and technological transformation across the country. While na-

tionally only 12.3% of weaving workers were employed in factories in 1905, rising

to 26.7% by 1914, the corresponding figures for Fukui’s silk weaving sector were

substantially higher at 37.7% and 67.4%, respectively (Table A2). Thus, while

home producers—including both home workshops with fewer than 10 workers and

putting-out systems where outworkers produced goods at home as side jobs—still

constituted the majority of employment in the national weaving sector through the

mid-1910s, approximately 40% of workers in Fukui’s silk weaving sector had already

transitioned to large factories by 1905, a figure that rose to around 70% within just a
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decade.24 Furthermore, Fukui’s silk-weaving sector led in the adoption and diffusion

of powerlooms. As shown in Figure A1b, the ratio of powerlooms to total looms in

Fukui’s habutae weaving sector rose from near zero in 1905 to over 65% across all

producers by 1914, substantially outpacing the national trend. This adoption was

even more pronounced among Fukui’s silk-weaving factories, reaching approximately

80% by 1914. The relative share of home producers in Fukui’s silk-weaving sector

declined to marginal levels during this period of powerloom diffusion.

Fukui’s successful development of its silk weaving industry was initially driven

by a surge in habutae production in Fukui City, followed by rapid diffusion into

surrounding counties. While in 1889 Fukui City alone accounted for over 95% of

the prefecture’s total silk weaving production, this figure fell to approximately 42%

by 1904, with seven local counties accounting for nearly 60% of output. Table A3

shows that this distribution largely persisted thereafter, though with fluctuations

within certain counties. Figure A3 illustrates the spatial distribution of silk-weaving

production (in pink) across Fukui Prefecture in 1922, with each circle representing

a local area within a county and its size indicating the relative production value.

The figure demonstrates the concentration of production in Fukui City (the largest

circle in the middle) and its neighboring areas.

Table A3: Regional Distribution of Silk-weaving Production in Fukui Prefecture

Year Production Regional Distribution (%)
Value Fukui Asuwa Yoshida Sakai Ono Imadate Niu Nanjo

City County County County County County County County

1889 694 95.5 0.2 1.2 0.4 0.4 1.8 0.0 0.4
1892 2,996 54.5 6.2 11.7 2.3 3.8 12.7 2.0 6.4
1899 14,879 54.8 5.0 16.8 8.6 3.7 7.0 1.4 2.4
1904 22,351 41.7 5.7 17.6 10.7 4.9 11.9 2.1 5.2
1905 16,149 44.1 6.1 14.1 9.6 5.9 13.8 2.4 3.7
1906 21,634 44.5 7.4 12.9 8.7 6.4 12.5 2.4 4.1
1907 17,188 42.5 5.7 14.0 12.4 7.2 12.9 2.0 3.2
1908 18,936 41.0 7.6 15.4 9.9 7.0 12.0 2.9 4.2
1909 21,116 42.8 6.1 13.7 10.7 6.1 14.5 2.2 3.9
1910 22,560 48.3 5.8 14.1 10.0 6.1 10.0 2.2 3.5
1911 21,146 43.8 6.6 11.1 12.3 8.7 10.0 2.0 5.5
1912 21,844 41.9 4.2 12.5 16.5 9.0 10.5 1.3 4.2
1913 26,347 35.9 4.1 11.9 19.6 9.6 13.1 1.2 4.7
1914 24,821 41.1 2.4 9.9 19.7 9.6 12.0 0.7 4.7
1915 31,690 41.1 2.6 8.9 18.9 9.3 13.8 0.7 4.6

Source: Fukui Statistical Yearbook and Fukui Industry Annual Report.

Powerloom Adoption. While powerlooms for cotton weaving had been well de-

veloped and widely diffused during Britain’s early 19th century industrial revolution

24The strong presence of large-scale factories in Fukui’s silk weaving sector is presumably at-
tributable to the sector being largely established and funded by local merchants, as well as small-
and mid-scale landlords (Kandachi, 1974).
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Figure A2: Trends of “Home-Producers” in Fukui’s Silk-weaving Industry
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Note: The figures use the statistics documented in the Fukui Prefecture Statistics Yearbooks.
Home workshops are defined as silk-weaving plants with less than 10 workers. Putting-out systems
refer to both thread suppliers who provided materials to outworkers and outsourcing weavers who
produced fabrics in their own home for piece rates.
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Figure A3: The Spatial Distribution of Fukui Manufacturing Production in 1922

Source: The History of Fukui Prefecture, 1922, Vol. 3.
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(Bythell, 1969), powerlooms for automated silk weaving remained underdeveloped

for large-scale production until the late 19th century, primarily due to the more deli-

cate and precise operations required for silk weaving and the prohibitively high costs

of silk-weaving powerlooms (Federico, 2009). The rapid diffusion of powerlooms in

Japan, and particularly in Fukui from the late 1900s onward, was facilitated primar-

ily by two factors: the availability of domestically manufactured powerlooms and

access to electrical power.

In 1906, the Fukui Prefectural Industrial Experiment Station conducted experi-

ments with domestically manufactured powerlooms and concluded that, though still

prototypical, Japanese machines were simple yet comparable to imported alterna-

tives. These machines were subsequently promoted to weaving factory owners and

received an overwhelmingly positive response (Fukui Silk Association, 1921). Recog-

nizing the imminent shift toward mechanized weaving, leading silk-weaving factory

owners in Fukui City purchased powerlooms from other prefectures in 1907. After

installation, they discovered that these machines reduced labor expenses while si-

multaneously standardizing product quality, prompting them to expand their usage

(Fukui City, 1994). By 1909, several powerloom ironworks and shops had been es-

tablished in Fukui, and locally developed powerlooms better suited to Fukui’s silk

fabrics were invented or refined, resulting in the further rapid spread of cheaper and

more efficient powerlooms from Fukui City to surrounding rural districts.25

Beyond the diffusion of domestic powerlooms, access to electricity during this

period was equally crucial for powerloom adoption. Although powerlooms could op-

erate using waterpower, steam, petroleum engines, electric motors, or gas engines,

electricity proved superior in terms of stable supply and operational costs. Electric-

ity was first introduced to Fukui in 1899 by the Kyoto Electric Company’s Fukui

branch, which initially had a capacity of 80 kW (later expanded to 160 kW). This

supply was limited to Fukui City, however, and focused primarily on electric light-

ing, with only 30 horsepower allocated for manufacturing power use (Inoue, 1913).26

Beginning in 1907, the company undertook significant expansion, launching a new

Hydroelectric Station (800 kW) in July 1908 and an additional plant (900 kW) in

November 1911. The company extended its supply area to include the outskirts of

Fukui City, introduced a convenient motor rental service, and lowered tariffs—all of

which facilitated powerloom adoption (Inoue, 1913). Concurrent with Kyoto Elec-

tric’s policy shift, another firm, Echizen Electric, was established in 1908 and began

operations with an output of 250 kW in August 1909, distributing both lighting and

power to southern areas of Fukui. Furthermore, several additional electric compa-

25Hashino (2012) notes that the price of a domestic powerloom was one-seventh to one-twelfth
the cost of an imported powerloom, making it economically feasible for factories to adopt this
transformative technology.

26Kogita (2000) cites a 1906 report stating that rates for lighting and motive power were relatively
high, and although local investors attempted to negotiate with the company for its sale, it refused
further negotiations due to its substantial profitability.
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nies established electricity stations between 1909 and 1914, providing electricity to

previously unserved outlying counties (Figure A6). Consequently, most powerlooms

adopted in the silk-weaving sector during this period were electrically powered, with

only a few exceptions using gas power.

Beyond these external conditions, contemporary reports and subsequent stud-

ies consistently cite labor cost reduction as a primary driver behind Fukui’s rapid

powerloom adoption. For instance, Fukui City (1994) notes, “it is well known that

powerlooms save manpower and reduce labor” and “the profits generated from man-

ufacturing a certain amount of products using powerlooms can never be matched by

manual machines.” Similarly, Fukui Prefecture (1994) observes that “Fukui Prefec-

ture has made rapid progress in the use of powerlooms in order to reduce habutae

production cost.” Notably, the fixed capital investment for powerlooms was esti-

mated to be at least six times greater than that for handlooms, not including power

costs and depreciation of other accompanying machinery and equipment (Hashino,

2012). Therefore, the rapid adoption of powerlooms must have been motivated by

factory owners’ expectations of substantial economic gains. These economic advan-

tages of powerloom automation appear to have been greatest for larger factories, as

adoption was concentrated among incumbent larger handloom factories (Figure A4)

and remained rare among home-based producers (Figure A2).

Business Accounting. A particularly valuable historical source for understand-

ing the economic implications of powerloom adoption in silk weaving is the com-

parative business accounting records preserved in contemporary reports. One such

detailed accounting document comes from a 1910 survey conducted by Fukui’s ex-

port textile inspection institution (Fukui Prefecture, 1911), presented in Table A4.

This record compares the monthly financial performance between operations using

10 handlooms versus 20 powerlooms. The data collection periods (March and May)

were sufficiently close that product prices per unit of weight remained identical, pre-

sumably reflecting comparable product quality. The production volumes achieved

by these two operations, however, differed substantially. The output per loom was

50% higher for powerlooms (6 pieces) compared to handlooms (4 pieces). Moreover,

powerloom products featured greater fabric width than handloom products, result-

ing in more than a twofold difference in total production between a single powerloom

and a handloom. This productivity differential directly translated into a more than

twofold difference in per-loom revenue between the two technologies.

Raw silk (warp and weft threads) constituted the primary cost component, ac-

counting for over 80% of revenue from habutae sales. Table A4 indicates that raw

material costs represented a slightly higher proportion of revenue in powerloom

operations than in handloom operations (85.4% versus 83.7%), possibly reflecting

powerlooms’ requirement for higher-quality raw silk to ensure smooth operation
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Figure A4: Trends of Powerloom Plants
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Figure A5: Plant Size Distribution by Power Adoption

0 25 50 75 100 125
Worker

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Pr

ob
ab

ili
ty

Nonadopated Plants

0 25 50 75 100 125
Worker

Adopted Plants

Source: The panel dataset used in the main text.
Note: The cutoff at 10 workers is because the micro data published in the Fukui
Prefecture Statistics Yearbook only includes plants with 10 or more workers and
regards them as factories to distinguish them from small-scale home producers.

Figure A6: The Provision of Electricity by Electric Companies in Fukui

Source: Illustrated History of Fukui Prefecture
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(Fukui City, 1994).27

Labor costs constituted the largest component of the remaining expenses, with

weaving wages representing the largest share, followed by preparation wages. While

operating 20 powerlooms required higher total weaving and preparation wages than

operating 10 handlooms, these increases were disproportionately small relative to

the revenue differential. Weaving wages accounted for 7% of revenue under hand-

loom operations but only 2.5% under powerloom operations. Notably, the piece rate

for powerloom silk weaving was just 0.6 yen, half the 1.2 yen piece rate for hand-

loom silk weaving. Similar proportional reductions appeared in preparation wages.

Consequently, despite additional labor costs such as supervisor and machine oper-

ator salaries, total labor costs represented a substantially smaller share of revenue

under powerloom operations compared to handloom operations. Conversely, both

capital costs and operating expenses increased slightly as a proportion of revenue.

Powerloom operations required higher capital costs—including powerloom depreci-

ation, equipment interest, factory expenses, and waste-thread depreciation—than

the fixed capital depreciation under handloom operations. Operating expenses nec-

essarily included additional power costs for powerloom operations. The enhanced

profitability of powerlooms thus derived entirely from reduced labor costs. The la-

bor share of value-added declined from 55.4% under handloom operations to 38.2%

under powerloom operations, while the profit share of value-added increased from 9

to 17%.

Given that raw-silk costs exceeded 80% of total habutae sales under either pro-

duction mode, the silk weaving industry operated on thin margins and remained

highly vulnerable to fluctuations in raw-silk and habutae prices. Figure A7 illus-

trates the habutae export price and raw thread price during our study period. Raw

thread prices declined gradually by approximately 20% after 1906, while habutae

export prices fluctuated, experiencing 20% spikes around 1909 and 1914. Thus,

while business cycles certainly affected the industry, overall product market condi-

tions generally remained favorable for habutae exports. As Fukui Prefecture (1994)

reports: “Although commercial and industrial circles languished during the Russo-

Japanese war (1904-1905), habutae alone saw robust overseas demand... once the

economy turned lively from 1907 (Meiji 40) onward, both electric and other mode

of power use rapidly multiplied... Meanwhile, as the number of powerlooms surged,

handlooms markedly declined, and with stricter enforcement of inspections and so

27Federico (2009) explains: “The speed increased the stress on the silk and therefore the chances
that it could break at any weak point. Of course, the yarn had to be knotted by hand, wasting
both time in having to stop the machine and precious silk. Moreover, the worker had to correct
by hand any defect of the silk (loose threads, dirty spots etc.) which otherwise would have spoiled
the appearance of the cloth. Therefore, the use of an inferior silk required more labour and could
hamper the increase of the number of looms per worker—that is, of the productivity of labour.
The hand-loom had none of these constraints, and could use any kind of silk profitably. The stress
was less intense and any breaking or defect could be corrected by the weaver himself. In other
words, mechanization shifted, ceteris paribus, the average quality of silk upwards.”
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forth, many small-capital producers were forced out, giving rise to a ’consolidated’

structure. Thus, in 1913, sales of output were extremely favorable, exceeding 23

million yen—truly the highest price levels since the industry’s inception.”

Table A4: Comparison of Monthly Income and Expenditure for Handlooms vs.
Powerlooms (1910)

Handlooms Powerlooms

Operation Details 10 looms, May 1910 20 looms, March 1910

Production

Fabric Width 1.8 shaku 2.4 shaku

Production Volume 40 hiki 120 hiki

Production per Loom 4.0 hiki 6.0 hiki

Finished Weight 8 kan 400 momme 34 kan 650 momme

Price 8.20 yen 100 momme 8.20 yen 100 momme

Yen % Yen %

Income

Sales Revenue 688.80 100.0 2,841.30 100.0

Raw Materials

Warp Threads 286.20 41.6 1,250.64 44.0

Weft Threads 290.00 42.1 1,175.04 41.4

Subtotal Materials 576.20 83.7 2,425.68 85.4

Labor Costs

Weaving Wages 48.00 7.0 72.00 2.5

Preparation Wages 16.40 2.4 41.76 1.5

Supervisor Salary — 20.00 0.7

Machine Operators — 15.00 0.5

Bonus — 6.00 0.2

Transportation Allowance — 7.80 0.3

Subtotal Labor 64.40 9.3 162.56 5.7

Capital Costs

Working Capital Interest (2.25%/yr) 6.75 1.0 24.00 0.8

Fixed Capital Depreciation 11.25 1.6 —

Powerloom Depreciation — 10.80 0.4

Equipment Interest (1.75%/yr) — 3.00 0.1

Preparation Equipment Depreciation — 3.72 0.1

Insurance Fee — 2.40 0.1

Factory Expenses — 10.60 0.4

Machine Repair 1.20 0.2 3.90 0.1

Heddle, Reed, Shuttle Depreciation 3.40 0.5 10.20 0.4

Waste-Thread Cost Depreciation — 37.80 1.3

Subtotal Capital 22.60 3.3 106.42 3.7

Operating Expenses

Power Costs — 18.00 0.6

Starch / Sizing 2.80 0.4 10.80 0.4

Mineral Oil — 1.20 0.0

Refining Fees 9.44 1.4 33.96 1.2

Sales Commission 2.00 0.3 6.00 0.2

Lighting and Fuel 2.00 0.3 7.20 0.3

Public Taxes 2.00 0.3 6.00 0.2

Consumable Supplies 0.40 0.1 1.20 0.0

Continued on next page
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Table A4 – Continued

Handlooms Powerlooms

Operation Details 10 looms, May 1910 20 looms, March 1910

Subtotal Operating 18.64 2.7 84.36 3.0

Total Expenses 681.84 99.0 2,779.02 97.8

Net Profit from Operations 6.96 1.0 62.28 2.2

Additional Income (waste yarn etc.) 3.50 0.5 10.32 0.4

Total Net Profit 10.46 1.5 72.60 2.6

Key Performance Indicators

Revenue per Loom 68.88 142.07

Value-Added (Rev.−Mat.) per Loom 11.26 20.78

Labor Cost per Loom 6.44 8.13

Capital Cost per Loom 2.26 5.32

Operating Expense per Loom 1.86 4.22

Profit per Loom 1.05 3.63

Weaving Wage per Output (Piece-rate) 1.20 0.60

Labor Cost per Output 1.61 1.35

Operating Expense per Output 0.47 0.70

Profit per Output 0.26 0.61

Labor Share of Value-Added 55.4% 38.2%

Capital Share of Value-Added 19.5% 25.0%

Operating Exp. Share of Value-Added 16.1% 19.8%

Profit Share of Value-Added 9.0% 17.0%

Note: This table compares the monthly financial performance of handloom operations (10 looms)
versus powerloom operations (20 looms) based on accounting records from surveys in 1910 (Fukui
Prefecture, 1911). Conversions for Japanese historical units: 1 kan = 3.75 kg, 1momme = 3.75 g,
1 shaku ≈ 30.3 cm, 1 tsubo ≈ 3.3m2. Weaving/preparation wages were 1.20/0.41 yen per piece on
handlooms and 0.60/0.34 yen on powerlooms. Refining fees were paid to refining factories as a
service cost. For handlooms, working capital interest reflects working capital of 900 yen at a 2.25%
annual rate (9 shu). Fixed capital depreciation includes land/buildings (40 tsubo, 800 yen) and 10
looms/tools (200 yen), totaling 1,000 yen depreciated over 10 years with 1.75% annual interest (7
shu). For powerlooms, working capital interest assumes a 1.75% annual rate (7 shu), depreciation
assumes a 10-year life, and factory expenses reflect fixed capital of 2,550 yen (including 1,500 yen
financed at 1.75% interest) depreciated over 20 years. Percentages in the main body refer to the
share of each cost item in total sales revenue. Some expense categories differ between the two
operations due to their different production systems.

Worker Tasks and Productivity. The silk-weaving industry during this period

employed three primary categories of workers: weavers, preparation workers, and

mechanics. Weavers constituted the core workforce and consisted predominantly of

adult female workers. Using handlooms, each weaver operated a single loom, trans-

forming raw silk threads into fabric. This operation involved the repetitive execution

of three manual tasks: manipulating the shuttle, operating the pedals/heddles to

control the warp threads, and using the reed/batten to beat the weft threads into

place. Though seemingly routine, this work demanded considerable finger dexterity

and patience with delicate materials (Inoue, 1913), typically requiring approximately

three years of on-the-job training to develop the necessary skills (Kogita, 2000).28

28The importance of skill accumulation is evidenced by the practice of local silk-weaving asso-
ciations rewarding long-term, highly productive workers, with ceremonies often attended by the
local Governor (Fukui Prefecture, 1994).
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Figure A7: Habutae Export Price and Raw Thread Price
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Source: Fukui Prefecture Statistics Yearbook.

Preparation work—involving tasks such as spooling, rewinding, and sizing—was typ-

ically performed by child or adolescent apprentices who would eventually progress to

become weavers upon reaching appropriate age and skill levels. Despite the relatively

lighter nature of preparation work compared to weaving, these younger workers typ-

ically maintained similar working hours as their adult counterparts (Noshomusho,

1903). In some instances, preparation tasks were also performed by adult female

workers or even male workers in Fukui (Inoue, 1913). Finally, a small contingent of

male workers served as mechanics, responsible for setting up and repairing weaving

equipment.

The adoption of powerlooms fundamentally transformed the production process

by mechanizing the routine manual tasks previously performed by female weavers.

Freed from the physical constraints of handloom operation, weavers’ responsibil-

ities were redirected toward newer, less routine tasks associated with powerloom

management. These new tasks included halting looms for thread resupply, repair-

ing broken threads, and monitoring multiple machines for contingencies (Uchida,

1960; Sanbe, 1961; Tsunoyama, 1983; Hunter, 2003). (See Figure A8 for a visual

comparison of the two types of machines and production processes.) Inoue (1913)

observes that these new responsibilities required equal or greater finger dexterity

and attentiveness than handloom operation—particularly for quickly and precisely

reconnecting broken silk threads during machine weaving—and that skills developed

through handloom operation transferred effectively to powerloom work. This skill

transferability helps explain the sustained demand for manual workers in silk weav-
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ing, distinguishing it from industries like iron manufacturing or cotton spinning,

where extensively automated production required only minimal machine monitor-

ing. Contemporary sources also indicate that the training period for powerloom

weavers was reduced to approximately six months, and that female workers gener-

ally considered powerloom weaving less physically demanding than handloom work.

While documentation on how powerlooms affected preparation tasks is compara-

tively sparse, at least one source indicates that power was increasingly applied to

preparation work as well, enhancing the efficiency of warp preparation processes

(Fukushima Prefecture, 1910). Concurrently, powerlooms expanded the responsibil-

ities of mechanical workers, who now managed comprehensive maintenance opera-

tions including lubricating powerlooms and resolving all types of mechanical issues

(Inoue, 1913). Specialized training proved advantageous, as more progressive factory

owners reportedly employed graduates from the Fukui Industrial Training Institute

as powerloom operators, entrusting them with overall machinery management.

Powerloom adoption significantly enhanced weaver productivity through two

mechanisms: increased production per loom in a given time period, and an in-

creased number of looms operable by a single weaver. Sanbe (1961) documents that

while a worker operating a hand-and-foot-driven handloom could produce 1.5 rolls

(tan) of silk fabric daily, a worker managing approximately two powerlooms could

produce 2 rolls with each machine. The combined effect yielded a 2.67-fold increase

in labor productivity. Similar evidence appears in a 1911 survey conducted by the

Fukui Chamber of Commerce (Table A5), which reported per-loom productivity

approximately 1.45 times higher for powerlooms than handlooms. With two pow-

erlooms typically assigned per worker, total labor productivity under powerloom

production was approximately 2.9 times that of handloom production. Further sta-

tistical evidence of this productivity differential is provided by Okazaki (2021), who

utilized prefecture-, county-, and plant-level data to estimate production functions

for the Japanese silk weaving industry during this period, finding that powerlooms

increased labor productivity by approximately two to three times after controlling

for organizational changes. This substantial productivity enhancement explains how

Fukui’s silk sector could increase output volumes despite declining total employment

during the period of powerloom diffusion (Figure 1).

Labor Supply. The workforce in Fukui’s silk weaving sector consisted predomi-

nantly of young, unmarried females from local agricultural and lower-income fam-

ilies. While approximately one-third of female workers in Fukui were recruited

from outside the prefecture (primarily from neighboring Ishikawa Prefecture) around

1900, by 1904 most female weavers originated from Fukui’s own rural districts, with

only a small minority from the Kanazawa area (the silk center of Ishikawa) (Fukui

Prefecture, 1994; Fukui City, 1994). The industrial weaving sector’s expansion

placed considerable pressure on agricultural labor markets, making it “gradually
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Figure A8: Handloom Production and Powerloom Production

(a) Handloom Operation (b) Powerloom Operation

(c) Powerloom Operation in a Fukui Factory

Source: https://commons.wikimedia.org/wiki/File:Hand-weaving_in_factory.

_(19329323753).jpg (left panel); https://monk.radford.edu/viewer/7281/ (right panel);
https://dl.ndl.go.jp/pid/9539681/1/35 (bottom panel)
Note: Panel (a) is a photo of hand-weaving factory from a set of color-tinted transparencies
depicting life in Japan around 1910. Panel (b) is a photo of Kiryu Textile Company in the
1910s or 1920s, equipped with imported powerlooms from the U.S. It was claimed to be the
first machinery factory in Kiryu, Gunma Prefecture, another main production place along with
Fukui at that time. Panel (c) is a photo of Matsui Loom Factory in 1910, a workshop with
35 workers run by Buntaro Matsui, a raw silk and habutae merchant in Fukui City. This
factory had a single 6 horse power electric motor installed and a belt transmitting power from
the drive shaft above the photo to each powerloom. Another photo of Matsui Loom Factory:
https://www.library-archives.pref.fukui.lg.jp/fukui/07/zusetsu/D14/d1412.jpg.
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Table A5: Comparison of Powerloom and Handloom Worker Productivity and
Wages in Fukui (1911)

Category Powerlooms Handlooms
Number of Looms
Total Looms (December 1911) 5,326 11,106
Export-oriented Looms 5,326 9,441
Domestic Market Looms 0 1,665
Production Capacity (per Loom)
Hourly Production 2.9 shaku 2.0 shaku
Daily Production (12 hours) 35 shaku 25 shaku
Monthly Production (28 days) 8.2 hiki 5.5 hiki
Annual Production 98 hiki 70 hiki
Production Efficiency Ratio 1.45 1.00
Labor Efficiency
Looms per Worker 2 1
Labor Productivity Ratio 2.90 1.00
Wages (per Worker)
Hourly Wage (sen) 2.6 1.7
Daily Wage (sen) 32 20.7
Monthly Wage (yen) 8.98 5.80
Annual Wage (yen) 117.76 70.00
Wage Ratio 1.68 1.00
Labor Cost Analysis
Workers per 1,000 hiki Production 5.1 14.3
Labor Cost per 1,000 hiki (yen) 747 1,234
Cost Efficiency Ratio 1.00 1.65

Notes: This table compares the production capabilities of powerlooms and hand-
looms based on a survey conducted by the Fukui Chamber of Commerce in 1911. For
powerlooms, one worker could operate two machines, while hand looms required one
worker per loom. The production efficiency ratio and labor productivity ratio use
hand looms as the baseline (1.00). 1 yen equals 100 sen. For Japanese units: 1 kan =
3.75 kg; 1 momme = 3.75 g; 1 shaku = approximately 30.3 cm; 1 hiki is a standard
bolt of fabric (approx. 1.8 shaku width by 25-28 yards length).
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Figure A9: Trends of Fukui’s Silk-weaving Industry (Factory Micro-data)
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Note: All figures here use the data from the Fukui Prefecture Statistical Yearbooks. Different from
Figure 1, where the data used (except the wage series in Figure 1d) are the aggregate statistics
directly documented, here all statistic trends are calculated using the plant micro data, which
are used for the main analysis. The “plants” defined in the Statistical Yearbooks are any plants
employing 10 or more workers, whereas plants smaller than this scale are defined as home producers.
Both average wages and average operation hours are weighted by corresponding employment.
Average wage is inflation-adjusted using the national price index published by Band of Japan,
with 1904 as the benchmark year.
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difficult to procure hired labor for farming” and forcing those seeking indentured

servants to “look beyond their own villages to other towns or counties.” Labor

supply also became increasingly localized during this period, as evidenced by the

declining prominence of the boardinghouse system. For instance, around 1904 in

Fukui City, “female workers were half commuting, half boarding” (Fukui City, 1994),

but by 1909, multiple factories reported that “all the workers are commuting” or

“both male and female workers commute, with hardly any boarding female workers”

(Fukushima Prefecture, 1910). Similarly, Inoue (1913) observed that “only a very

small fraction [of workers] are exchanged among the three Hokuriku prefectures as

their fortunes rise or fall, with almost none from farther away. Moreover, in Fukui

City, the local underclass supplies the female labor: all are girls from nearby, suffic-

ing to fill the ranks.” This localization trend has been attributed to the introduction

of powerlooms in rural areas of Fukui Prefecture (which had previously supplied fe-

male labor to Fukui City) and to female workers’ general preference to remain in

their home regions.

Most young women entered factory employment with the aim of accumulating

savings for marriage or acquiring silk-weaving skills for post-marriage income supple-

mentation. Upon marriage, they typically left factory employment, with some relo-

cating elsewhere (Inoue, 1913; Fukui City, 1994). Some workers, lured by promises

of high wages or pressured by family circumstances, found themselves unable to

endure the demanding work conditions in silk-weaving plants and subsequently de-

parted (Noshomusho, 1903). This pattern resulted in high workforce turnover at the

plant level and created a persistent need to replenish and attract workers. Table A6

illustrates the age and tenure distribution of workers in Fukui’s silk-weaving indus-

try around 1902, based on a survey conducted by the Ministry of Agriculture and

Commerce (Noshomusho, 1903). The largest cohort of female workers was aged 14

to 19 (41%), followed by those aged 10 to 13 (30%) and those aged 20 to 24 (18%).29

Female workers over age 25 constituted just 8% of the total female workforce. Re-

garding tenure, over 40% of female workers had been employed for approximately

one year or less, and over 80% for less than three years. Only 20% had a tenure

of five years or more. The survey noted that worker departures were most frequent

among those with less than two years’ tenure and declined progressively among

longer-tenured workers.

Silk-weaving plant owners employed various strategies to reduce worker turnover

and attract new employees. First, worker contracts frequently included obliga-

tion periods, typically ranging from one to five years depending on worker age

(Noshomusho, 1903).30 Second, local weaving factory owners often formed asso-

29Inoue (1913) notes the absence of age or education restrictions or requirements, observing that
“most are poor people’s daughters working to support the family, the entire system has drifted
toward laissez-faire.”

30According to Inoue (1913), “so-called apprentices who came in not knowing weaving might
depart for another mill as soon as they acquired proficiency, leaving the previous employer to bear
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ciations or unions that prohibited worker poaching and regulated wages (Fukui Silk

Association, 1921).31 They also occasionally rewarded workers with long service

records or outstanding technical skills. The practical effectiveness of these strate-

gies, however, remains empirically uncertain. Inoue (1913) observed that “terms-of-

service contracts often proved a dead letter, and as soon as workers ran off midterm

to another factory, one could do nothing but let it go.” Regarding anti-poaching

measures, the same source noted that “that phenomenon occurred only when there

were many orders and a shortage of female workers, so it was not so severe at

present. When the shortage became serious enough to send recruiters into villages,

the method of poaching involved quietly instructing one’s own female workers to lure

their experienced friends with higher pay. Since these women were easily swayed,

they would immediately transfer to another factory if the deal was better, ignoring

guild rules.” Thus, these contractual and rule-based strategies for limiting worker

movement likely achieved only partial success. Finally, evidence suggests that silk-

weaving factory owners occasionally established branches in local areas, potentially

to secure additional workers. Indeed, one owner responded to a 1910 interview by

stating, “We have a shortage of workers. Hence the necessity of establishing branch

sites.”

Table A6: Worker Demographics in the Fukui Silk-weaving Industry

Panel A: Workers by Age Group
Age Group Male % Female %
Under 10 years 0 0.0% 511 3.1%
10-13 years 2 0.9% 4,840 29.7%
14-19 years 132 56.7% 6,665 40.9%
20-24 years 52 22.3% 2,932 18.0%
25-50 years 47 20.2% 1,338 8.2%
Total 233 100.0% 16,286 100.0%

Panel B: Workers by Years of Tenure
Tenure Male % Female % s
Less than 6 months 32 13.7% 1,730 10.6%
1 year 64 27.4% 5,117 31.4%
2 years 45 19.2% 3,526 21.7%
3 years 37 15.8% 2,581 15.9%
5 years 18 7.7% 2,168 13.3%
More than 5 years 38 16.2% 1,164 7.1%
Total 234 100.0% 16,286 100.0%

Source: Noshomusho (1903)

the loss. As a result, it was customary to impose a two- or three-year obligation to discourage
abrupt departures.”

31These associations typically established rules stipulating that “no worker from House A may
be employed by House B for any reason without House A’s permission, except that re-employment
by the previous owner is not forbidden.”
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Wage System. The silk-weaving sector employed distinct compensation methods

based on worker roles and tasks (Fukui Prefecture, 1911). Weavers were predomi-

nantly compensated through piece rates, while workers engaged in preparatory pro-

cesses typically received daily or monthly wages. Supervisors and mechanics were

likewise paid monthly wages. The piece-rate system for weavers reflects economic

logic: Worker productivity varied substantially, and habutae products differed in

size and grade, necessitating performance-based pay to both elicit effort and ensure

equitable compensation. Even for preparatory and male workers, employers imple-

mented ability-based daily or monthly wage systems (Noshomusho, 1903). Prepara-

tory workers, particularly child apprentices and trainees, typically received lower

wages than other workers, while adult male workers generally commanded higher

compensation than adult female workers (see our microdata in Figure A9).32 In-

oue (1913) observes that beyond product type, wages were determined by factory

customs and dynamic factors such as product market prices.

Of particular relevance to our study is the comparison between wages under

handloom and powerloom production during the period when both technologies co-

existed in the market. Our business accounting evidence in Table A4 indicates a

piece rate of 0.6 yen (per hiki) under powerloom production versus 1.2 yen under

handloom production in 1910. Since revenue increased fourfold under the assump-

tion that a worker operated two powerlooms, this translates to a doubling of pow-

erloom wages relative to handloom wages. A more direct comparison appears in

Table A5, which includes survey data on per-worker wages. Compared to a labor

productivity ratio of 2.9 between powerlooms and handlooms, the wage ratio was

only 1.68, further suggesting significantly lower piece rates under powerloom pro-

duction. Inoue (1913) similarly noted that handloom piece rates were approximately

double those for powerloom weaving, while productivity was 3-4 times higher with

powerlooms for workers who could manage two machines after one year of train-

ing. Consistent evidence appears even within individual factories. For instance,

Fukushima Prefecture (1910) reports that at Nakajima machinery factory, the pow-

erloom weavers’ piece rate for heavy products was 0.65 yen, while handloom weavers

received 1.6 yen for producing the same weight of product. After accounting for

productivity differences, powerloom weavers earned slightly higher wages than their

handloom counterparts. Thus, while different entrepreneurs established varying

piece rates, a common approach was to reduce powerloom piece rates (and perhaps

also to raise handloom piece rates) such that total wage disparities among workers

32Fukui Prefecture (1911) notes that while first-rate, second-rate, and third-rate preparatory
workers were paid 50, 40, and 25 sen (0.50, 0.40, and 0.25 yen) daily, respectively, apprentices
received only 15-16 sen. Noshomusho (1903) indicates that high/mid/low-level male workers earned
40/30/25 sen daily, while corresponding female workers earned 33/20/15 sen. The majority of men
earned below 30 sen daily, and the majority of women below 20 sen. Inoue (1913) reports that
compared to the 30-40 sen daily wage for powerloom weavers, preparatory worker wages ranged
between 10 sen (for trainees) and 30 sen, while adult males earned 3 to 9 yen per month.
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Table A7: Summary Statistics of Plant Panel

NonPowered Plants
(Mean)

Powered Plants
(Mean)

Powered
- NonPowered

Total Workers Per Plant 22.99 30.57 7.58
[20.23] [27.73] (0.79)

- Male Adult Workers 1.79 3.94 2.15
[2.64] [4.92] (0.12)

- Female Adult Workers 17.28 24.22 6.94
[16.48] [22.13] (0.64)

- Child Workers 3.92 2.41 -1.51
[6.45] [5.18] (0.22)

Work Hours Per Day 11.42 11.56 0.13
[1.39] [1.17] (0.05)

Average Daily Wage Per Plant 17.13 23.65 6.52
[4.17] [4.19] (0.15)

- Male Adult Workers 22.33 30.60 8.27
[5.87] [5.43] (0.23)

- Female Adult Workers 17.87 23.77 5.90
[4.01] [4.18] (0.15)

- Child Workers 10.59 12.51 1.92
[2.86] [3.38] (0.15)

Observations 3651 971 4622

Note: This table reports the summary statistics of the plant-level panel datasets
used in the main text. Means across all plants in the panel-data set are reported.
Standard deviations are reported in square brackets; standard errors are reported
in parentheses.

remained relatively moderate or not as large as productivity disparities.

Facing widening wage gaps between powerloom and handloom weavers, handloom-

based operations likely encountered increasing difficulty in securing and retaining

workers. While direct evidence from Fukui is scarce, narrative evidence from neigh-

boring Ishikawa Prefecture, which experienced similar powerloom diffusion during

this period, is instructive. When asked by visitors how to maintain worker satisfac-

tion amid powerloom proliferation, the owner of a large handloom factory with over

300 handlooms responded: “Because female workers’ income under handlooms can

scarcely match that with powerlooms, we have reduced to 150 handlooms and now

are switching gradually to powerlooms.” This experience supports the argument

that “in the Kanazawa area in the early 1910s, competition in wages with factories

adopting powerlooms essentially forced handloom-based factories to either introduce

powerlooms or cease operations” (Matsumura, 2010).
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B Robustness Analysis

B1 Robustness on Plant-level Estimation

Table B1: The Plant-Level Effect of Power Introduction on
Employment

(1) (2) (3) (4)
Male
Adult

Female
Adult Child Overall

Panel A: Regression on Employment
Power 1.996 2.395 -0.835 3.558

(0.614) (1.943) (0.697) (2.281)
Pre-treatment Mean 2.32 21.89 4.44 28.65
N 3,487 3,488 3,488 3,488
Panel B: Poisson Regression on Employment
Power 0.337 0.028 0.165 0.102∗∗

(0.063) (0.063) (0.153) (0.052)
Pre-treatment Mean 2.32 21.89 4.44 28.65
N 2,923 3,488 2,923 3,488
Panel C: Regression on 1(Employment > 0)
Power -0.004 0.032

(0.035) (0.039)
Pre-treatment Mean 0.72 0.68
N 3,488 3,488

Note: This table reports the alternative estimations of Equation (2)
with the dependent variables to be plant employment levels (Panels A
and B) and an indicator of non-zero employment (Panel C). Panels A
and C estimate the model using a TWFE regression same as in the
main text, while Panel B estimates the model using a Poisson pseudo-
likelihood regression. All estimations here differ in the sample used from
the main text estimation, as now zero employment of male adult and
child workers is no longer dropped. The unit of observation is plant-
year. Clustering robust standard errors against the plant-level correla-
tions are reported in parentheses. All specifications include plant and
area-year fixed effects.
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Figure B1: The Plant-level Impacts of Power Adoption on Employment and Wage
(Country-Year Fixed Effects)
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Note: This figure reports the results of plant-level event studies on employment and wages specified
in Equation (1), but with country-year fixed effects instead of more restrictive area-year fixed
effects. See the note of Figure 2 for more details.49



Figure B2: Comparison of Estimators for Plant-level Event-study Estimations
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Note: This figure reports a robustness check of the plant-level event study estimations in Fig-
ure 2 under different estimators. In particular, we test with five estimators that have been used
in the literature: the OLS estimator, the Sun and Abraham (2021) estimator (the baseline one
used in the main text), the Callaway and Sant’Anna (2021) estimator, the De Chaisemartin and
d’Haultfoeuille (2020) estimator, and the estimator in Borusyak et al. (2021). In the case using
the Callaway and Sant’Anna (2021) estimator, we also include the not-yet-adopting firms in the
control group, in addition to the never-treated or last-treated plants used in our baseline estima-
tion. Since the estimators of Callaway and Sant’Anna (2021) and Borusyak et al. (2021) require
more data for statistical power, we replace the area-by-year fixed effects used in our main text
with simply year effect and county-by-year effect, respectively. We follow the suggestions in Roth
(2024) to ensure that the plots produced by the methods of Callaway and Sant’Anna (2021) and
De Chaisemartin and d’Haultfoeuille (2020) are comparable to conventional event-study plots.
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Figure B3: Sensitivity Analysis on Parallel Trends Using Relative Magnitudes Re-
strictions

-.2
0

.2
.4

.6
.8

95
%

 R
ob

us
t C

I

Original .5 1 1.5 2
Mbar

(a) Male Adult: Log Employment

-.2
0

.2
.4

.6
.8

95
%

 R
ob

us
t C

I

Original .5 1 1.5 2
Mbar

(b) Female Adult: Log Employment

-.1
0

.1
.2

.3
95

%
 R

ob
us

t C
I

Original .5 1 1.5 2
Mbar

(c) Male Adult: Log wage

-.1
0

.1
.2

.3
95

%
 R

ob
us

t C
I

Original .5 1 1.5 2
Mbar

(d) Female Adult: Log wage

Note: This figure reports a robustness check of the parallel trend assumption required for the
plant-level event study analysis, employing the methods proposed by Rambachan and Roth (2023).
Specifically, it displays robust confidence intervals (95% including the true parameter) under the
restrictions that the maximum deviation from parallel trends in the post-treatment period does not
exceed an M̄ -fold of the worst pre-treatment trend deviation. For the pre-treatment periods, we
use periods from k = −4 to k = −2, same as the ones we use in event study plots. For the assessed
post-treatment effects, we average the effects over periods k = 1 to k = 3. The analysis reveals that
substantial post-treatment violations of parallel trends would be necessary to nullify the observed
significant treatment effects on male adult employment, and on male and female adult log wages.
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Figure B4: Sensitivity Analysis on Parallel Trends Using Smoothness Restrictions
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Note: This figure reports a robustness check of the parallel trend assumption required for the
plant-level event study analysis, employing the methods proposed by Rambachan and Roth (2023).
Specifically, it displays robust confidence intervals (95% including the true parameter) under the
restrictions that the maximum deviation from parallel trends in the post-treatment period does
not exceed a symmetric slope range [−M,M ] centered on the linear extrapolation of pre-treatment
trends. In conducting this robustness check, we use pre-treatment periods from k = −4 to k = −2,
mirroring the time frames in our event study plots. The post-treatment effects are averaged over
the post-treatment periods k = 1 to k = 3. The analysis reveals that only a considerable departure
from the linearly extrapolated pre-treatment trend approximating the magnitude of the original
effect would overturn the significant treatment effects observed on male adult employment, and on
the log wages for both male and female adults.

52



C Theoretical Framework: Task Automation and

Oligopsonistic Competition

This section develops a theoretical framework to formalize the theoretical underpin-

nings of the interpretations we advanced for our empirical findings in the main text.

The framework unifies the task-based technological change perspective of Acemoglu

and Restrepo (2018, 2019a) with the oligopsonistic labor-market competition model

of Berger et al. (2022). Our aim is twofold. First, we demonstrate how a task-based

approach can capture the nuances of automation’s labor market impact in a manner

consistent with our empirical findings. Second, we show that imperfect labor market

competition shapes how these automation effects manifest, and that such frictions

are critical for reconciling several of our empirical patterns. In the main text, we

argue that both product- and labor-market competition likely played roles in driv-

ing exits of low-wage, low-productivity factories. To keep the exposition tractable,

however, we assume perfectly competitive product markets here and focus on the

implications of the labor market’s imperfect competition.33 Despite this, we show

that automation can induce a “business stealing” force via local labor-market com-

petition similar to the one via product market competition (Acemoglu et al., 2020;

Aghion et al., 2022). For convenience, we use “firm” hereafter instead of “factory”

or “plant” as in the main text.

C1 Production Technology

Consider a firm i operating in a local labor market j populated with nj firms. All

firms produce a homogeneous good with its price normalized to one. Each firm’s

production requires completing a set of differentiated tasks indexed by a continuum

from N − 1 to N . Formally,

lnYi = ln zi +

∫ N

N−1

ln yi(x)dx, (C1)

where Yi is total production of the good, yi(x) is production per task x, and zi is

a firm-specific productivity term. Each task is produced according to the following

technological regime:

yi(x) =


γL(x)li(x) + γM(x)mi(x) if x ∈ [N − 1, I]

γL(x)li(x) if x ∈ (I, I ′)

γH(x)hi(x) if x ∈ [I ′, N ],

(C2)

33Models that assume perfectly competitive labor markets but monopolistic product markets
include Acemoglu et al. (2020) and Koch et al. (2021). Such frameworks produce only market-level
wage shifts—individual firms all face the same wage—and generate spillovers primarily through
employment levels rather than wages. This contrasts with our empirical findings, which emphasize
variation in wages at the plant level and strong local labor-market frictions.
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where I and I ′ represent the “technological” and “skill” thresholds, respectively.

The functions γM , γL, and γH measure the productivities of three inputs—machinery

(mi), L-type labor (li), and H-type labor (hi), respectively—across different tasks.

Tasks in [N − 1, I] can be performed by either L-type labor or machinery, which are

assumed to be perfectly substitutes. Beyond I, tasks must be carried out by human

labor, so I marks the technological constraint of existing automation technology. A

further constraint imposes separate tasks domains for L- and H-type labor in (I, I ′]

and [I ′, N ], respectively, which could arise from distinct comparative advantages

between the two worker types. Under this setup, the adoption of new automation

technology modeled as an increase in I would directly displaces the tasks of L-type

labor, without affecting the tasks of H-type labor. The critical differences between

L- and H-type labor, therefore, lie in their distinct task ranges and whether their

tasks can be mechanized. For our empirical context, we interpret L-type labor as

female weavers and H-type labor as male mechanics.34.

To simplify the setup, we assume machinery m is competitively supplied by

external producers at a fixed rental rate R. By contrast, both types of labor inputs

(l and h) are supplied elastically within the local labor market. Denoting their wages

by WiL and WiH , respectively, each firm features an upward-sloping labor supply

curve that depends on firm i’s total employment of the labor type across tasks, as

well as local labor market conditions, as outlined in the next subsection. To simplify

the discussion, we further assume that γL(x)
γM (x)

is a non-decreasing continuous function

of x on the interval [N − 1, I ′] and that

MCiL

γL(I)
>

R

γM(I)
∀i (A1)

, where MCiL is the marginal cost or shadow price of L-type labor for firm i.35

These assumptions guarantee that all firms find it more efficient (cost saving) to use

34Although it is common (and convenient) to label L-type labor as “low-skilled” and H-type
labor as “high-skilled,” we prefer more neutral terminology that highlights the task-based nature
of workers within this framework. Skill is inherently multidimensional, and wages—often used
as an empirical proxy for skill—are endogenously determined in labor markets. In the model
here, wage levels depend on the range of tasks performed and the labor supply, as discussed later.
Indeed, under certain conditions, L-type workers may earn higher wages than H-type workers prior
to automation if demand for tasks in (I, I ′] is sufficiently higher than supply. Once I expands,
automating those tasks, the wage ordering can reverse. Consequently, the distinction between L-
and H-type labor really lies in whose tasks can be automated (and whose tasks can be retained or
even extended) rather than in any fixed notion of “skill.” In this sense, it is perhaps most suitable
to refer to L type labor as “displaceable” and H-type labor as “non-displaceable.”

35Assumption A1 departs from the typical condition in the task-based framework of Acemoglu
and Restrepo (2018, 2019a) in the use of the marginal cost MCiL instead of the wage rate WiL.
In their setup, tasks are supplied by competitive producers, so all final-good firms face a flat labor
supply curve and the same market wage rate if labor is used for the task. Here, however, workers
are employed directly by the final-good producer, which faces an upward-slopping labor supply
curve and thus holds monopsony power. Hence, an additional unit of labor for the production of
a task not only incurs the current wage rate but also raises the cost for existing workers of that
type employed on other tasks.
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machinery for tasks in [N − 1, I] rather than L-type labor, and that the automa-

tion boundary I is binding across all firms so that a marginal increase in I would

lead them to replace more human labor tasks with machine tasks. Relaxing our

assumption to allow for an endogenous machine use threshold below I would gen-

erate endogenous selection into automation adoption, as larger firms facing higher

marginal labor costs would be more likely to reach the threshold and thus have

greater incentives to adopt automation.36

The log-aggregator production function implies, through standard arguments of

cost-minimization, that the optimal use of each task’s input is in inverse proportion

to its marginal cost:

mi(x) =
Yi

R
for x ∈ [N − 1, I]

li(x) =
Yi

MCiL

for x ∈ (I, I ′)

hi(x) =
Yi

MCiH

for x ∈ [I ′, N ]

(C3)

.37 Because the firm faces a single shadow price for each input across tasks, any

given input is used in the same quantity in all tasks where that input is applied.

The production function in (C1) can thus be rewritten in terms of total firm-level

input usage:

Yi = Bi(
Mi

I −N + 1
)I−N+1(

Li

I ′ − I
)I

′−I(
Hi

N − I ′
)N−I′ , (C4)

where Mi =

∫ I

N−1

mi(x)dx, Li =

∫ I′

I

li(x)dx,Hi =

∫ N

I′
hi(x)dx, and

Bi = zi exp

(∫ I

N−1

ln γM(x) +

∫ I′

I

ln γL(x) +

∫ N

I′
ln γH(x)dx

)
.

As a typical result of the task-based framework, the technological threshold I

36Specifically, in practice, firms with lower marginal wage rates or higher capital rental rates
may find that Assumption A1 does not hold, resulting in an interior threshold I∗i < I where only
tasks in [N, I∗i ] are performed by machines. The prediction that larger, more productive firms are
more likely to be technologically constrained and therefore to adopt new automation technologies
following a technological breakthrough is also consistent with our data. While this endogenous
technological adoption implication is interesting and noteworthy, we abstract from it to focus on
how an exogenous expansion of I affects labor demand on those automated firms.

37For a log aggregate production function, each task’s output yi(x) also scales inversely with its
marginal cost: yi(x) =

Yi

MCi(x)
. Here, each task’s marginal cost again incorporates the firm’s rising

labor costs due to an upward-sloping labor supply, rather than a flat task/wage rate in a perfectly
competitive task/labor market. Specifically,

MCi(x) =


R

γM (x) if x ∈ [N − 1, I]
WiL

γL(x) if x ∈ (I, I ′)
WiH

γH(x) if x ∈ [I ′, N ].
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directly enters the exponent for Li, corresponding to the set of labor tasks that can

be displaced by machinery. As I expands (reflecting more advanced automation), a

larger share of tasks shifts from L-type labor to machinery, reducing the labor share

of output (the “displacement effect”). By contrast, factor-augmenting technological

changes (i.e., increases in γ-functions) only shift the factor-neutral term Bi and thus

boosts overall labor demand without altering factor shares.

C2 Labor Market

Assume a representative household in local labor market j that solves the following

utility maximization problem:

max
Ci,Li,Hi

Uj

C− L
ϕL+1

ϕL

ϕL+1
ϕL

− H
ϕH+1

ϕH

ϕH+1
ϕH


s.t. C =

∑
i∈j

WiLLi+
∑
i∈j

WiHHi +Πj, L =

(∑
i∈j

L
ηL+1

ηL
i

) ηL
ηL+1

, and H =

(∑
i∈j

H
ηH+1

ηH
i

) ηH
ηH+1

,

(C5)

where Πj denotes the aggregated firm profits of all firms in market j. The aggre-

gator terms L and H capture the household’s disutility from supplying L-type and

H-type labor, respectively, and serve as a tractable way for modeling oligopsonistic

labor-market competition among the mj firms in market j. As shown in Berger

et al. (2022), such an aggregate labor supply setup can be micro-founded from a

discrete-choice setting in which heterogeneous workers choose employers based on

idiosyncratic firm preferences. The elasticity parameters ηL > 0 and ηH > 0 govern

the degree of substitution across employers in the local labor market, analogous to

the elasticity of substitution in frameworks of monopolistic or oligopolistic compe-

tition. These parameters capture the intensity of employer competition within an

area: Larger values of ηL or ηH indicate less employer differentiation and more com-

petitive local labor markets. In the limiting case where ηL → ∞ or ηH → ∞, the

local labor market approaches perfect competition, with firms’ marginal products

equalized at a single market wage. Meanwhile, parameters ϕL > 0 and ϕH > 0

determine the market-level labor supply elasticities, reflecting households’ tradeoffs

between market work and outside options (leisure or home production), as well as

potential competition across geographic markets. Since we do not explicitly model

between-market competition, we henceforth omit the subscript j and focus our anal-

ysis on a single local labor market.

Solving the household problem yields the labor supply curve that each firm i

faces for S ∈ {H,L}:

WiS = S
1

ϕS
− 1

ηS S
1
ηS
i for S ∈ {H,L}, (C6)
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, where S is the aggregator (L or H), and Si denotes the employment of labor type

S at firm i.38 Since S incorporates the employment levels of all firms in the local

labor market, a firm’s optimal employment depends not only on its own wage but

also on the wages and employment levels of competing firms. Following Berger et

al. (2022), we impose:

ηS > ϕS for S ∈ {H,L} (A2)

. This assumption states that the elasticity of substitution across firms within

the local labor market exceeds the market-level labor supply elasticity. Intuitively,

Assumption A2 implies that attracting workers from competitors within the market

is relatively more efficient than expanding the total market labor supply—a condition

that holds in most empirical settings and drives firms’ strategic responses under

oligopsonistic competition

C3 Equilibrium

Combining the production function (Equation (C4)) and the labor supply function

(Equation (C6)), we formulate the firm’s profit maximization problem:

Πi = max
Hi,Li,Mi

Yi(Hi, Li,Mi)−WiHHi −WiLLi −RMi − Ω (C7)

s.t. WiS

(
Si, S

∗
−i

)
= S

1
ϕS

− 1
ηS S

1
ηS
i and S

(
Si, S

∗
−i

)
=

[
S

ηS+1

ηS
i +

∑
k ̸=i

S
∗ ηS+1

ηS
k

] ηS
ηS+1

for S ∈ {H,L}.

, where S∗
k (k ̸= i) represents the optimal employment levels of other firms in the

same local labor market, and Ω is a fixed operation cost that does not affect input

choices. Each firm takes competitors’ actions as given and a Nash equilibrium is

achieved when all firms in the local labor market make optimal choices. The first

order conditions are:
∂Yi

∂Mi

= R (C8)

∂Yi

∂Si︸︷︷︸
Marginal product: MPSi

= WiS +
∂WiS

∂Si

∣∣∣∣
S∗
−i

Si︸ ︷︷ ︸
Marginal cost: MCSi

for S ∈ {H,L}.
(C9)

38This specification of labor supply function nests several special cases. Under perfect competi-

tion in the local labor market (ηS → ∞), Equation (C6) simplifies to WiS = S
1

ϕS , where all firms
pay identical wages that depend on solely on aggregate employment. When, instead, ηS = ϕS ,

Equation (C6) reduces to WiS = Si

1
ηS , corresponding to the monopsony case. Similarly, if there is

only one firm (S = Si), we obtain WiS = Si

1
ϕS .
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Following the derivation in Berger et al. (2022), we can express Equation (C9) as:

MPiS = MCiS = WiS/µiS,where µiS =
εiS

εiS + 1
,

εiS :=

[
∂ lnWiS

∂ lnSi

∣∣∣∣
S−i

]−1

=

[
(1− eiS)

1

ηS
+ eiS

1

ϕS

]−1

and eiS =
WiSSi∑
i WiSSi

.
(C10)

Here, µiS denotes firm i’s markdown on input S ∈ {H,L}, εiS represents the inverse

of the firm’s wage elasticity of labor supply for input S, and eiS is the firm’s share

of input S’s wage bill in the local labor market. Under Assumption A2, firms with

higher marginal products (e.g., due to higher productivity zi) offer higher wages,

employ more workers, capture a larger share of the labor market, and end up facing

a less elastic labor supply curve—resulting in a wider markdown and greater labor

market power.

Using Equations (C4), (C6) and (C10), we can express the entire system of labor

demand and labor supply functions as:

WiL (Li) = µiL(I
′ − I)Yi/Li (labor demand for L)

WiL

(
Li, L

∗
−i

)
= L

1
ϕL

− 1
ηLL

1
ηL
i (labor supply for L),

(C11)

and
WiH (Li) = µiH(N − I ′)Yi/Hi (labor demand for H)

WiH

(
Hi, H

∗
−i

)
= H

1
ϕH

− 1
ηH H

1
ηH
i (labor supply for H).

(C12)

From the labor demand equations we can derive the labor shares as:

siL ≡ WiLLi

Yi

= µiL(I
′ − I);

siH ≡ WiHHi

Yi

= µiH(N − I ′).

(C13)

The market equilibrium for this local economy is defined as a set of firm-specific

input allocations {Mi, Li, Hi}i∈j and wages {WiL,WiH}i∈j such that, given the ma-

chine rental rate R, Equations (C8), (C11) and (C12) are satisfied for each firm i in

the local labor market j.

C4 Automation Impact

Our framework settled above allows us to examine how automation adoption affects

both a firm’s own labor demand and that of its competitors, providing a theoret-

ical account for our empirical findings. We characterize an automation event as

an increase in the I for a specific firm i while holding constant the technological

parameters of competing firms. We first analyze the direct (first-round) effect of

this technology adoption on the adopting firm’s labor demand—how changes in Ii
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affect firm i’s optimal labor allocation and wages immediately. We then characterize

the triggered (second-round) equilibrium spillover effects arising from labor market

competition.39

Labor Demand. From the labor demand equations in Equations (C11) and (C12),

we can decompose the direct effect of marginal automation on the adopting firm’s

labor demand:

d ln(WiLLi)

dI
=

d lnµiL

dI︸ ︷︷ ︸
Markdown effect ≶0

+
d ln(I ′ − I)

dI︸ ︷︷ ︸
(Net) Displacement effect <0

+
d ln(Yi)

dI︸ ︷︷ ︸
Productivity effect >0

;

d ln(WiHHi)

dI
=

d lnµiH

dI︸ ︷︷ ︸
Markdown effect ≶0

+
d ln(Yi)

dI︸ ︷︷ ︸
Productivity effect >0

.

(C14)

Equation (C14) reveals that automation generates a negative displacement effect

(d ln(I
′−I)

dI
= − 1

I′−I
) on L-type labor demand by directly reducing their task range.40

Counterbalancing this, automation also produces a productivity effect through more

efficient production under automation. We can further decompose this productivity

effect as:

d lnYi

dI
=

d lnYi

dI

∣∣∣∣
M,L,H︸ ︷︷ ︸

Pure productivity effect

+
∂ lnYi

∂M

dMi

dI
+

∂ lnYi

∂L

dLi

dI
+

∂ lnYi

∂H

dHi

dI︸ ︷︷ ︸
Re-optimization effect

,

d lnYi

dI

∣∣∣∣
M,L,H

= ln

(
WiL

µiLγL(I)

)
− ln

(
R

γM(I)

)
> 0.

(C15)

The pure productivity effect (productivity gains from automation holding input

quantities fixed) is positive under Assumption A1, and the re-optimization effect

must also be positive given profit optimization. Under our assumption of perfectly

elastic machine supply, the total productivity effect can fully offset the negative

displacement effect. To see this, we can derive automation’s impact on average

labor productivity in the simplified case where I ′ = N (i.e., no H-type labor is

used):

d ln(Yi/Li)

dI
=

ln
(

WiL

µiLγL(I)

)
− ln

(
R

γM (I)

)
I ′ − I

+
1

I ′ − I
> 0. (C16)

The second term in Equation (C16) precisely cancels out the displacement effect,

yielding a positive net effect. When machines’ supply or use is subject to constraints

due to production limitations, financial frictions, or other constraints, however, the

displacement effect may dominate and reduce labor demand. This analysis highlights

how labor market frictions could hamper automation’s productivity effects. More

39Subsequent ripple effects are of lower orders and do not qualitatively alter our conclusions.
40This can represent a net effect, incorporating both task displacement and reinstatement into

new tasks, assuming unchanged γL across the interval (I, I ′).
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frictional labor markets reduce productivity gains from re-optimization, thereby

limiting a potential increase in labor demand. Finally, Equation (C14) includes a

markdown effect whose sign depends on the net impact of displacement and pro-

ductivity effects. When this net effect is positive and increases labor demand, it

raises the firm’s market share eiS and labor elasticity 1/εiS, widening the markdown

(reducing µiS) under Assumption A2. This creates an additional dampening force

on potential labor demand gains from automation, though this second-order effect

cannot reverse the sign of the overall impact.

These results formalize our interpretations in the main text. First, the absence of

a displacement effect indicates a stronger (and always positive) effect on the labor

demand of H-type workers compared to L-type workers (male mechanics versus

female weavers in our empirical context). Moreover, when new tasks are created for

H-type workers, a reinstatement effect further augments their labor demand:

d ln(WiHHi)

dN
=

d lnµiH

dN︸ ︷︷ ︸
Markdown effect ≶0

+
d ln(N − I ′)

dN︸ ︷︷ ︸
Reinstatement effect >0

+
d ln(Yi)

dN︸ ︷︷ ︸
Productivity effect >0

, (C17)

where the productivity effect is positive when R
γM (N−1)

> MCiH

γH(N)
. Thus, increased

demand for “skilled” workers that is traditionally attributed to skill-biased techno-

logical change in factor-biased frameworks can instead be re-interpreted as a joint

result of productivity and reinstatement effects within the task-based framework.

Second, when the displacement effect is substantial and factor supply (machinery

and labor) faces frictions, the productivity effect for L-type workers may not fully

offset the displacement effect, resulting in muted or even negative impacts on their

labor demand. Nevertheless, labor productivity always increases, substantially when

the direct cost savings from machine-replaced tasks are large. This is consistent with

our findings for female silk weavers following powerloom adoption. Lastly, Equa-

tion (C13), demonstrates that automation (increased I) directly reduces the labor

share of L-type workers while raising the factor shares of other inputs. Enhanced

employer monopsony power (reduced µiL) could further suppress labor’s share. Both

predictions are consistent with female weavers’ experience in our empirical analysis.

Employment versus Wage. Combining the labor demand and labor supply

equations in Equations (C11) and (C12) to derive equilibrium employment and

wages, we can decompose the labor demand effect into employment and wage com-

ponents:

d lnWiL

dI
=

1

1 + ηL

(
d lnµiL

dI
+

d ln(I ′ − I)

dI
+

d lnYi

dI

)
+

ηL − ϕL

ϕL(1 + ηL)

d lnL

dI

d lnLi

dI
=

ηL
1 + ηL

(
d lnµiL

dI
+

d ln(I ′ − I)

dI
+

d lnYi

dI

)
+

ϕL − ηL
ϕL(1 + ηL)

d lnL

dI
,

(C18)
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and
d lnWiH

dI
=

1

1 + ηH

(
d lnµiH

dI
+

d lnYi

dI

)
+

ηH − ϕH

ϕH(1 + ηH)

d lnH

dI

d lnHi

dI
=

ηH
1 + ηH

(
d lnµiH

dI
+

d lnYi

dI

)
+

ϕH − ηH
ϕH(1 + ηH)

d lnH

dI

(C19)

.41 From Equations (C18) and (C19), it is clear that the relative magnitude of

automation’s impact on employment versus wages depends critically on the labor

elasticity parameters—both within-market (η) and across markets (ϕ). In fact, we

can express this relationship as:

d ln(WiS)

dI
=

(
1− s̃iS
ηS

+
s̃iS
ϕS

)
d ln(Si)

dI
for S ∈ {H,L}, (C20)

where s̃iS ≡ S
ηS+1

ηS
i /

∑
k S

ηS+1

ηS
k ∈ (0, 1]. Thus technological change affects employ-

ment more than wages when η or ϕ is larger—that is, when labor markets are more

competitive either within or across local areas, with their relative importance deter-

mined by the firm’s employment share in the local market. This result is intuitive:

In more competitive labor markets, productivity-enhanced firms can attract workers

from competitors without substantial wage increases. Conversely, in monopsonis-

tic or oligopsonistic settings where firms face upward-sloping labor supply curves,

expanding employment necessitates significant wage increases, dampening the em-

ployment response to productivity-enhancing technologies.

Our empirical findings of significant wage increases (10%) for female weavers

with minimal employment changes at adopting firms suggest an inelastic plant-

level labor supply for these workers. This indicates significant monopsony power,

which can be manifested by wide markdowns (Equation (C10)) and low labor shares

(Equation (C13)). In contrast, the pronounced increase in male employment relative

to their wage growth indicates a more elastic labor supply, which is consistent with

their limited presence in the silk-weaving sector before powerloom diffusion. We next

show that these implications, derived from event-study analyses comparing adopting

and non-adopting plants within local markets, remain valid even when accounting

for strategic behavior under oligopsonistic competition.

Spillover Effects. To analyze competitors’ strategic responses to firm i’s tech-

nology adoption, we derive the indirect cross-effects on firm k ̸= i from equilibrium

41The explicit formulas for equilibrium employment and wages are

WiL = (µiL(I
′ − I)Yi)

1
1+ηL L

ηL−ϕL
ϕL(1+ηL) , Li = (µiL(I

′ − I)Yi)
ηL

1+ηL L
ϕL−ηL

ϕL(1+ηL) ;

WiH = (µiH(N − I ′)Yi)
1

1+ηH H
ηH−ϕH

ϕH (1+ηH ) , Hi = (µiH(N − I ′)Yi)
ηH

1+ηH H
ϕH−ηH

ϕH (1+ηH ) .
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employment and wage equations:

d lnWkS

dI
=

1

1 + ηS

d lnµkS

dekS

dekS
deiS

deiS
dI︸ ︷︷ ︸

+

+
ηS − ϕS

ϕS(1 + ηS)
s̃iS

d lnSi

dI︸ ︷︷ ︸
+

d lnSk

dI
=

ηS
1 + ηS

d lnµkS

dekS

dekS
deiS

deiS
dI︸ ︷︷ ︸

+

+
ϕS − ηS

ϕS(1 + ηS)
s̃iS

d lnSi

dI︸ ︷︷ ︸
−

.

(C21)

This represents the second-round effect induced by the impact of the first-round

direct effect of technological adoption (Equations (C18) and (C19)) on labor mar-

ket aggregators. Under Assumption A2 and assuming a positive direct effect on

employment (d lnSi

dI
> 0), the first term in the right hand side of both equations

of Equation (C21) is positive, reflecting that reduced market share and hence in-

creased labor elasticity incentivize competing firm k to raise wages to attract more

workers. The second term is positive for wages (WkS) but negative for employment

(Sk), however, reflecting firm k’s optimal adjustment of labor input choices under

a tighter labor market (higher S) and a less elastic labor supply curve resulting

from increased market-wide employment. Under plausible parameter values and

firm shares, the second term’s effect on aggregate labor indexes typically dominates

the first term for employment, yielding an overall negative effect.42 Consequently, if

automation adoption increases the adopting firm’s employment to meet higher labor

demand, it induces competitors to reduce employment while increasing wages. This

result emerges because firms are strategic substitutes in employment decisions but

strategic complements in wage setting, analogous to Cournot competition. In such

cases, a standard event-study analysis would overestimate the employment effect

and underestimate the wage effect of automation adoption.

Applying these insights to our empirical context, spillover effects on adult fe-

male weavers’ employment are likely minimal given our estimated null employment

effects. This is because if significant negative employment spillovers existed, such

that nonadopting competitors respond by simultaneously reducing their workforce,

the employment gap between adopting and nonadopting firms would widen, yielding

a positive and significant treatment effect on employment, which we do not observe.

Conversely, our estimated wage increases for adult female weavers may underesti-

mate the true effect of automation adoption, as competitors likely bid up wages to

retain their workers. For adult male mechanics, spillover effects are probably limited

despite significant direct effects in our event study analysis. This is because the size

42By solving the derivatives in the second equation of Equation (C21), we obtain

d lnSk

dI
=

1

1 + ηS
(ηS − ϕS)

1

ϕS

[
µkSekSeiS

(
1 +

1− s̃iS
ηS

+
s̃iS
ϕS

)
− s̃iS

]
d lnSi

dI
.

Under Assumption A2, the sign of employment spillovers depends on the sign of the term in
brackets, which is likely negative in most cases.
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of both terms in Equation (C21) depends on the labor market shares of firm i and k

(eiS, ekS, s̃iS). When firms command only negligible shares in the labor market, they

will have minimal impact on labor market aggregates and are themselves minimally

affected by changes in these aggregates. These theoretical predictions also align with

our supplementary event study analysis in FigureE1, which compares nonadopting

plants in adopting areas versus those in nonadopting areas; the analysis finds sig-

nificant positive spillover effects only for adult female wage, lending support to the

relevance of our theoretical framework.

Business Stealing. The strategic responses of competitors with respect to a firm’s

technology adoption and subsequent labor demand increase generate a business

stealing effect via labor market competition, akin to what can be found in mo-

nopolistic or oligopolistic settings where product market competition plays the role

(Acemoglu et al., 2020; Aghion et al., 2022). In oligopolistic labor markets, when

one firm increases productivity and shifts its labor demand curve rightward, its com-

petitors have to face a leftward-shifted labor supply curve, thus reducing their labor

inputs while raising wages in the new equilibrium. This intensive margin of busi-

ness stealing can also lead to an extensive margin of business stealing, by driving

low-productivity, low-profit firms our of the market. To demonstrate this, we derive

a firm’s equilibrium profit using optimal input choices:

Πi = Yi [(1− µiL) (I
′ − I) + (1− µiH) (N − I ′)]− Ω. (C22)

Since Yi depends on idiosyncratic productivity zi and µiS depends on labor market

wage bill share ei, Equation (C22) reveals that the profit is greater for more produc-

tive firms (higher z) through two channels: a larger output (higher Yi) and a wider

markdown (lower values of µiL and µiH). As discussed earlier, more productive firms

realize larger productivity and labor cost gains from automation and are thus more

likely to adopt new technology, leaving non-adopting firms disproportionately con-

centrated among low-productivity, low-wage, and low-profit establishments.43 New

technology diffusion squeezes non-adopting firms’ profits by forcing them to contend

with more costly labor, resulting in reduced output (Yi) and narrower markdowns

(µiS). This competitive pressure can thus trigger the exit of the least productive

firms when their gross profits fall below fixed operating costs (Ω), leading to zero or

negative net profits.

We propose that this labor market competition, driven by both incumbent adop-

tion and entry of powered plants, partially explains the observed simultaneous exit

43Perhaps interesting, Equation (C22) also indicates that automation (increased I) reduces profit
because all profit in our setting stems from monopsony power, and labor-saving technology that
reduces labor use also reduces this source of profit. For automation to be profitable, however, the
increase in production must be large enough to counteract this effect. Additional gains from the
product market are also available in a more general setting that incorporates monopoly power.
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of less productive, low-wage “luddite” factories alongside powerloom diffusion. The

process reduces overall market employment while elevating market wages (through

both intensive and extensive business stealing margins).44 In a more general model

incorporating monopolistic or oligopolistic product markets, product market compe-

tition would similarly drive out low-productivity firms, further intensifying market

dynamics. Thus, technological displacement can materialize at the market level

even when strong productivity effects (combined with task reinstatement) prevent

employment declines within adopting firms. While entry of high-productivity, high-

wage firms equipped with new technologies could potentially offset reduced market

employment, such entry may take time to materialize and, at least in our empirical

context, was insufficient to fully mitigate the technological unemployment arising

from short-run market churning.45

Table C1: Market-level Impact of Technological Diffusion

Adoption Effect Spillover Effect Exit Effect Entry Effect

Market Employment + - - +
Market Mean Wage + + + +

Note: This table presents model predictions for various effects of automation technology dif-
fusion on market employment and wages under Assumptions A1 and A2. The adoption ef-
fect captures the direct first-round effect of a firm’s technology adoption. The spillover effect
reflects competitors’ strategic responses within the same labor market due to oligopsonistic
competition. The exit effect indicates the exit of marginal, low-wage firms induced by rising
market wages. The entry effect represents the entry of new technology-adopting firms with
high productivity and wages.

44There also exists a counteracting effect on market employment and wages stemming from
this market dynamics: Firm exit reduces labor market competition, potentially shifting labor
supply curves of surviving firms leftward and allowing them to pay lower wages while employing
more workers. This force, however, may be suppressed by downward wage rigidity, which prevents
substantial wage declines at the firm level due to worker incentives or fairness concerns. The relative
importance of these offsetting forces remains an empirical question worthy of further investigation.

45We summarize the signs of all potential effects at the market level in Table C1.
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D Alternative Theoretical Framework: Worker

Effort and Wage Contract

This section develops an alternative theoretical framework based on worker effort

and piece-rate wage contracts to demonstrate how automation technology reduces

rent-sharing with workers by allowing employers to lower the piece rates required to

elicit effort. This analysis thus solely targets on the main workforce in our empirical

context—female weavers—and abstracts from other labor. Although we primarily

examine a single firm-worker match, we implicitly assume a frictional, imperfectly

competitive labor market where workers’ outside options do not fully capture the

entire match surplus.

Consider a mass L of homogeneous workers and a unit mass of homogeneous

firms, all risk neutral. Workers and firms are initially randomly matched. Assuming

that production follows constant return to scale, firm size is irrelevant, allowing us

to focus on a worker-firm pair.46 Each worker-firm match produces according to the

production function:

y = f(k, e) = zk1−αeα, 0 < α < 1, (D1)

where z is firm productivity, k is capital or machinery, and e is worker effort. The

parameter α represents labor factor share, but can also be interpreted as task share

for labor, as we have seen within the task-based framework in Appendix C. The

production function is increasing and strictly concave. Effort cost is private and

the cost function c(e) is increasing and strictly convex. The firm cannot directly

observe effort but can infer it indirectly through output y, as the production function

is deterministic and there is no other uncertainty.47 At the beginning of the match,

the firm sets and commits to an output-dependent wage contract, w(y), in order to

discipline the worker’s effort. We assume that this wage contract is restricted to be

a pure piece rate with a fixed component,

w(y) = βy, 0 ≤ β ≤ p. (D2)

While restrictive, this wage-setting approach does match historical accounts of fe-

male silk weavers during our study period, and can be theoretically justified in

settings where employers need to hire multiple workers with heterogeneous produc-

tivity (Lazear, 2000).48 The worker, anticipating this wage contract, will choose e

46This setting is particularly appropriate for our context of silk-weaving factories, where equip-
ment was fully independent and the scale and scope economies were negligible.

47The setting—hidden action without uncertainty—results in a principal-agent model with trivial
information asymmetry, as the hidden action can be perfectly and costlessly detected, allowing first-
best effort to be easily achieved. Yet, this aligns with our empirical setting, where uncertainty in
silk weaving was minimal.

48We abstract from worker heterogeneity in productivity again given that the production of
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to maximize her utility:

U = w(f(e; k))− c(e), (D3)

where we assume the cost function takes the simple convex form:

c(e) = eγ, γ ≥ 1. (D4)

The worker also has an outside option, U0, such that she will reject the wage contract

if the expected utility falls below this value. If the worker accepts, the firm earns

profit:

π = pf(k, e)− w(f(e, k))− rk

= (p− β)f(k, e)− rk,
(D5)

where p is the price of the production good, and r is the capital rental rate. We

assume a homogeneous good with a perfectly competitive product market, so p is

taken exogenous to the firm. Capital price r is also assumed to be competitively

determined and thus constant. Similarly to Assumption 1 in Appendix C, we impose

the following condition on the rental price:

r

1− α
< (pz)

γ
γ−α , (A3)

, which would ensure that automation (reduced α) is cost-efficient for the firm.49

Given the wage contract, the worker’s optimal effort choice, e∗, is derived from

the first-order condition of her utility maximization problem:

w′(f(e; k))f ′(e; k) = c′(e)

⇒ e(β, k) =

[
α

γ
βzk1−α

] 1
γ−α

.
(D6)

This equation forms the worker’s incentive compatibility (IC) condition faced by the

firm. The firm’s problem is to choose the wage parameter, β, and capital level, k,

to maximize profit, π, subject to the IC constraint and the participation constraint

(PC),

w(f(k, e))− c(e) ≥ U0. (D7)

Assuming that PC is not binding, which is possible given our linear piece-rate re-

silk-weaving—our focus here—is perfectly divisible.
49Notably, more productive firms are again more likely to find automation beneficial and thus

have stronger incentives to adopt, similar to results from the framework in Appendix C.
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striction on the wage contract, we can solve the interior solution of the firm problem:

β∗ =
α

γ
p,

k∗ =(pz)
γ

α(γ−1)

(
Γ

r

) γ−a
a(γ−1)

,

e∗ =

(
α

γ

) 2
γ−α

(k∗)
1−α
γ−α .

(D8)

where Γ = (1− α)
(

α
γ

) 2α
γ−α

is a constant.50

The most significant insight from Equation (D8) is that automation—manifested

as a decrease in α as suggested by the task-based framework—results in a reduction

in the optimal piece rate β∗. This occurs because automation diminishes workers’

importance in production, thereby reducing the need for high-powered performance

pay to elicit effort. By contrast, factor-augmenting or factor-neutral technological

changes (e.g. increases in firm productivity z) do not affect the piece rate, though

they increase capital use k∗ and, through this, the equilibrium effort executed by the

worker. Similarly, business fluctuations that affect product price p influence optimal

input levels but leave the piece rate unchanged. Notably, a decline in the marginal

cost of exerting effort (decreased γ) would actually increase the piece rate rather

than reduce it, contrary to predictions from compensating differential models. This

occurs because higher piece rates and lower effort costs serve as complementary tools

for eliciting worker effort, generating a force that can potentially counteract firms’

incentives to reduce wages due to compensating differentials. Thus, automation

emerges as the only factor in our framework that reduces piece rates, consistent

with our empirical observations in the powerloom weaving context.

Despite facing reduced piece rates under automation, a worker’s total wages may

still increase as she operates more machines and produces greater output. This can

50If instead we allow firms to set arbitrary wage contracts, the PC would necessarily bind, because
the IC constraint can be satisfied at no additional costs. This occurs because in a principal-agent
model with no uncertainty, such as the one here, the firm can implement the “first-best” (efficient)
effort, efb such that

pf ′(efb; k) = c′(efb), (D9)

by setting the optimal wage function near the efficient effect efb as

w(y; k) =
c′
(
efb
)

f ′ (efb; k)
y +

(
c(efb) + U0 −

c′
(
efb
)

f ′ (efb; k)
f
(
efb; k

))
= py +

(
c(efb) + U0 − pf

(
efb; k

))
.

(D10)

, where the terms in brackets represent a constant (i.e. the intercept of a linear piece-rate wage
contract) chosen so that the worker’s payoff at efb exactly equals U0. In other words, the marginal
return from effort only needs to fully accrue to workers in the neighborhood of the first-best solution
to satisfy the IC constraint, while the level of the entire wage profile can be adjusted by the firm
to reduce the equilibrium wage to the outside option level. This thus allows firms to capture the
entire joint surplus with zero left to workers.
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be demonstrated through a decomposition similar to that in Appendix C:

− d lnw

dα
= −d ln β

dα︸ ︷︷ ︸
Displacement effect=−1

−d ln y

dα︸ ︷︷ ︸
Productivity effect>0

(D11)

, and

−d ln y

dα
= − d ln y

dα

∣∣∣∣
k,e︸ ︷︷ ︸

Pure productivity effect

−
(
∂ ln y

∂ ln k

d ln k

dα
+

∂ ln y

∂ ln e

d ln e

dα

)
︸ ︷︷ ︸

Re-optimization effect

,

− d ln y

dα

∣∣∣∣
k,e

= ln k − ln e =
γ

α(γ − α)
ln(pz) +

1

α
ln

(
1− α

r

)
> 0.

(D12)

The last equation uses optimal input choices, and the inequality holds under As-

sumption A3. This productivity effect is larger when productivity (z) or product

price (p) is high and when the convexity of the effort cost function (γ) is low.51

Next, using the optimal solutions, the firm’s equilibrium profit can be written

as:

π = py − w − rk =
α

γ
(γ − α)py, (D13)

which yields a wage-to-profit ratio of:

w

π
=

1

γ − α
. (D14)

Thus, a decrease in α induced by automation reduces this wage-to-profit ratio,

indicating that automation allows employers to capture a greater share of the gains

relative to workers—consistent with our observations in the Japanese silk-weaving

industry.52

51The reason why less convex effort cost functions yield larger pure productivity effects is that
they imply lower marginal productivity of labor effort, resulting in greater productivity gains when
these inputs are replaced by more efficient machines.

52The share of quasi-rent captured by workers involves a slightly more complex relationship.
The quasi-rent of a worker-firm match, denoted as Q, is:

Q = py − rk − c(e)− U0 (D15)

, where we assume the firm’s outside option is zero for simplicity. Using the first-order conditions,
i.e.

e∗γ =
α2

γ2
py∗,

rk∗ = p
γ − α

γ
(1− α)y∗.

(D16)

, the worker’s share of this quasi-rent can be written as

w − c(e)− U0

Q
=

pyα(γ−α)
γ2 − U0

pyα(γ−α)(1+γ)
γ2 − U0

. (D17)

. This ratio equals a constant 1
γ when U0 = 0 and increases with α when U0 > 0, provided that
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Finally, since wage (w) is a linear function of output, firms with low productivity

(z) may more frequently face binding the participation constraint (see the numerator

of Equation (D17)), requiring them to pay wages equal to workers’ outside options.

When the outside options (U0) are determined by alternative employment oppor-

tunities, automation diffusion among high-productivity competing firms can thus

force wage increases at nonadopting low-productivity firms—creating wage spillover

effects. This wage pressure reduces profits at these less productive firms, potentially

triggering their exit from the market.

α < γ/2 or γ > 2. Thus, in most cases, automation, via reducing workers’ production share
parameter α, also reduces the share of quasi-rent accrued to workers.
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E Additional Figures and Tables
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Figure E1: The Impacts of Area-level Power Adoption on Never-adopting Plants’
Employment and Wage
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Note: This figure reports the plant-level event study results of area-level adoption events on never-
adopting plants’ employment and wages across different worker categories. In particular, the
specification here replaces the plant-level treatment in Equation (1) with an area-level treatment
defined as the first time an area adopted power. Given that the treatment is at the area level,
we also replace the area-by-year fixed effects in Equation (1) with a simple year fixed effects. All
other notes are the same as in Figure 2.
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Figure E2: Employmen Size Distribution of Exited and Surviving Plants in Non-
adopting Areas versus Adopting Areas (Pool Years)
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Note: See the note of Figure 3.

Figure E3: Wage Distribution of Exited and Surviving Plants in Nonadopting Areas
(Individual Years; 1905-1908)
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Note: See the note of Figure 3.
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Figure E4: Wage Distribution of Exited and Surviving Plants in Nonadopting versus
Adopting Areas (Individual Years; 1909-1913)
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Note: See the note of Figure 3.

Figure E5: Labor Share Distribution of Exited and Surviving Plants in 1913
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Note: Labor share is calculated as yearly wage bills (daily wages × workers × 320 days) divided
by yearly production values (including raw input costs) at plant level. See the note of Figure 3 for
other details.
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