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Labor Supply Decisions

▷ People decide
▷ whether to work or not (extensive margin)
▷ how many hours to work (intensive margin)
▷ how hard to work
▷ when to quit a job
▷ which skills to acquire
▷ which occupations to enter

▷ What factors affect these decisions?
▷ E.g. consider you are currently working on a part-time job and then

(i) the wage becomes double or (ii) you win a lottery
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Measures of labor supply

▷ Extensive margin: labor force participation rate
▷ Labor force (LF) = employed (E) + unemployed (U)
▷ LFP Rate = LF / working age population

▷ Intensive margin: working hour per worker
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Labor Force Participation Rate (Male, Age 15+)

(What can cause the declines here?)
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Labor Force Participation Rate (Male by Age)

(Men are starting their work lives later and ending them earlier than before.)
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Labor Force Participation Rate (Female, Prime-age)

(Women had a very different trend compared to men! More next week!)
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Working Hours per Worker: Trend (Boppart and Krusell, 2020)

(What cause the declines here?)
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Working Hours per Worker: Cross-country (Bick et al., 2018)

(What cause the inverted-U shape here?)
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Working Hours per Person: US vs OECD (Rogerson, 2024)

(Why do Europeans and Japanese work less then Americans?)
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What are the Potential Drivers of Labor Supply?

▷ We focus on ”economics” factors b.c. in our economics models
agents behave under ”economics” incentives

▷ Wage; Income; Wealth
▷ Leisure activities; Housework
▷ Taxes; Welfare policies/programs

▷ General mechanisms are more useful and ”scientific” than just
saying

▷ ”Europeans are much lazier than Americans”
▷ ”Japaneses have the culture of working hard”

▷ Furthermore,
▷ culture is often formed due to economics incentives
▷ it’s in fact not difficult to incorporate culture factors into econ

models
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Labor Supply in Roy Framework

▷ Consider a setting of either work or home production

▷ Two choices:
▷ Work in labor market, receive whm

▷ Work at home and produce phh

▷ A person i works in labor market if
whm

i > phh
i

▷ People who are relatively more productive in the market will work

▷ Total labor supply, which sums all individual choices, depends on
▷ relative price w/p
▷ joint distribution of human capital F (hm,hh)

▷ Here, only extensive margin of labor supply is considered
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Setting of A Labor-Leisure Model

▷ Agent:
▷ Individuals of working age

▷ Decision/Choices:
▷ How many hours for work/leisure per day
▷ Note this choice nests both extensive (0) and intensive margin

▷ Time:
▷ Simple static choice

▷ Equlibrium:
▷ Partial equilibrium where wage is taken as given
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Can Workers Choose Working Hours?
▷ Don’t employers set the hours of work? (e.g. Ford in 1926)

▷ Workers can
▷ choose part-time vs full-time
▷ select industries/occupations/firms with different working hours
▷ shirk during their working time
▷ initiate labor movements

▷ So the argument is that employer requirements on work hours will
reflect workers’ preferences, esp. in the long-run

▷ What’s behind cultural and political movements can be thus utility
maximization

▷ But firms (labor demand side) surely have some power in setting
working hours

▷ Over business cycles (Kudoh et al., 2019)
▷ Across industries/occupations (e.g. law or IB firms) (Bertrand et al.,

2010))
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At a High Level

▷ The ”neoclassical theory of labor supply”: focus on individual
choice

▷ An application of consumer theory: choose between two goods
(consumption and leisure)

▷ The tricky part: here agents simultaneously choose consumption
and ”income” by choosing working hours

▷ Thus more close to what you have learned in your microeconomics
class
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Setting

▷ The agent has preference, i.e. a utility function U(C,L)
▷ C is consumption of goods and services (w/ normalized price p = 1)
▷ L is leisure
▷ Assume U(·, ·) is a strictly increasing and strictly concave (intuition:

decreasing marginal return)

▷ The agent has two endowments:
▷ Disposable time T : 24 or 16 or 12 hours
▷ Non-wage income Y : can be 0 or even negative (debt)

▷ The agent maximize utility by choosing L or working time H
▷ L + H = T thus choosing one pins down another
▷ Static optimization as no multiple periods and no savings

▷ Assume wage w is taken as given and does not depend on H
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Optimization

▷ Problem: maxC,L U(C,L) subject to C = w(T − L) + Y

▷ Note the budget constraint can be also written as
Tw + Y = Lw + C

▷ Tw + Y can be referred to as ”full income”
▷ The price (opportunity cost) for L is w
▷ A rise in w increases both full income and cost of leisure

▷ Alternatively: maxC,H V (C,H) = U(C,T − H) s.t. C = wH + Y
▷ Can also regard H in V () as a negative term, i.e. disutility
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Derivation
▷ maxC,L U(C,L) s.t. C = w(T − L) + Y

▷ Lagrangian: L = U(C,L)− λ (C − w(T − L)− Y )

▷ Assume an interior optimum, the First Order Conditions (FOCs):
LC =UC − λ = 0
LL =UL − λw = 0
Lλ =C − w(T − L)− Y = 0

▷ Tradeoff: UL(C∗,L∗) = wUC(C∗,L∗)
▷ Note UL/UC is the marginal rate of substitution (MRS), which

equates to w , the relative price

▷ Marshallian (Uncompensated) Demand functions:
L = Lm (w ,Y )

C = Cm (w ,Y )

▷ Lagrange multiplier: λ = UC = λm (w ,Y )
▷ Interpreted as marginal utility or ”shadow price” of income
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Visualize Optimization (see the code)
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Indifference Curves and Budget Constraint Curve

(The indifference curves bending outward (convex to origin) comes from our concavity
assumption; But why we don’t want it bending inward?)
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IC and BC in 3D Plot
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Not-Work is A Corner Solution (UL > wUC)

(We can define a ”reservation wage” w by w = UL(Y ,T )/UC(Y ,T ), i.e. the wage that is
just low enough to induce the agent to supply a tiny unit of labor)
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Corner Solution in 3D Plot
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Income Effect (An Increase in Y )
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Income Effect in Math
▷ Income Effect:

∂Lm

∂Y

▷ Income elasticity of leisure demand

εL,Y =
∂Lm

∂Y
Y
L

=
∂ lnLm

∂ lnY

▷ Leisure is generally regarded as a normal good, i.e. 0 < εL,Y ≤ 1
▷ Inferior good if εL,Y ≤ 0; Luxury good if εL,Y > 1
▷ This means ∂Lm

∂Y > 0

▷ The sign depends on the utility function used
▷ E.g. CD utility functions, U(C,L) = CαLβ with α, β > 0 and

α + β ≤ 1, imply both C and L are normal goods

▷ Cases of observing income effect:
▷ lottery; bequest; government cash transfer
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Wage Effect (An Increase in w )

(The result, again, depends on the shape of the indifference curve—i.e. the utility function!)
(It turns out that this wage change nests two effects: substitution and income effects!)
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Income + Substitution Effect (An Increase in w )

Step 1: Maintain the initial utility but twist to new wage (E → E ′; substitution effect);
Step 2: Shift to new budget constraint and find optimal level (E ′ → E1; income effect)
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Wage Effect in Math
▷ Slutsky equation:

∂Lm

∂w
=

∂Lh

∂w

∣∣∣
U︸ ︷︷ ︸

Substitution Effect (-)

+
∂Lm

∂Y
Hh

∣∣∣
w︸ ︷︷ ︸

Income Effect (+)

▷ Elasticity form:

εL,w︸︷︷︸
Uncompensated Elasticity

= εc
L,w︸︷︷︸

Compensated Elasticity

+εL,Y
wH
Y

▷ The net effect depends on the relative size of two effects

▷ Estimated results in the microeconomics literature are small:
▷ εH,w ∈ [−0.1,0.2] and εc

H,w ∈ [0.1,0.3]

▷ Cases of observing wage (price) effects:
▷ income tax; minimum wage
▷ ”Price” changes in leisure activities or home production
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The Dual Problem
(This problem helps to conduct the calculation in Step 1)

▷ The dual problem is to minimize the expenditure to achieve some
utility U:

Y (w ,U) = min
C,L

C − w(T − L)

s.t. U(C,L) ≥ U
▷ Referred as ”excess expenditure function”
▷ Here Y is no longer a given parameter in the budget constraint but

the value of the objective function

▷ L = C − w(T − L)− λ (U(C,L)− U)

▷ Hicksian (Compensated) Demand functions:
C = Ch (w ,U)

L = Lh (w ,U)

▷ Expenditure function: Y (w ,U) = Ch (w ,U)− w
(
T − Lh (w ,U)

)
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Derive Slutsky Equation
▷ Sheppard’s lemma: Yw (w ,U) = −(T − Lh(w ,U)) = −Hh(w ,U)

(take derivative of the expenditure function and use Envelop theorem)

▷ The Hicksian and Marshallian demand functions for leisure are
related to each other: Lh (w ,U) ≡ Lm (w ,Y (w ,U))

▷ Differentiating:
∂Lh

∂w
=

∂Lm

∂w
+

∂Lm

∂Y
∂Y
∂w

▷ Slutsky equation:
∂Lm

∂w
=

∂Lh

∂w︸︷︷︸
Substitution Effect (-)

+
∂Lm

∂Y
Hh︸ ︷︷ ︸

Income Effect (+)

(Be careful that we have rearranged the equation!)
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What Do ∂Lh

∂w and ∂Lm

∂Y Depend On?
▷ Slutsky equation in utility terms: (see next slide for derivation)

∂L
∂w

=
UC − (ULC − wUCC)(T − L)

ULL + w2UCC − 2wULC

▷ The denominator is the SOC of the problem and thus negative
given concavity (see in two slides)

▷ Thus ∂L
∂w ∝ −UC + (ULC − wUCC)H

▷ −UC captures the substitution effect, which is proportional to the
marginal utility of consumption

▷ (ULC − wUCC)H captures the income effect, which depends on the
cross-derivative and the concavity of the utility function in
consumption

▷ Now you can see why for Quasi-linear utility functions the income
effect is 0 (ULC = 0;UCC = 0)
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Derive Slutsky Equation from Utility Function
▷ Total differentiating UL

UC
= w with respect to w

▷
UC

∂UL
∂w −UL

∂UC
∂w

U2
C

= 1 ⇒ ∂UL
∂w − UL

UC

∂UC
∂w = UC ⇒ ∂UL

∂w − w ∂UC
∂w = UC

▷ ⇒ ULL
∂L
∂w + ULC

∂C
∂w − w(UCC

∂C
∂w + ULC

∂L
∂w ) = UC

▷ From C = (T − L)w + Y ⇒ ∂C
∂w = T − L − w ∂L

∂w

▷ ⇒ ULL
∂L
∂w + (ULC − wUCC)(T − L) + w2UCC

∂L
∂w − 2wULC

∂L
∂w = UC

▷ ⇒ ∂L
∂w = UC−(ULC−wUCC)(T−L)

ULL+w2UCC−2wULC

▷ Note that you can totally differentiating w.r.t. Y to get ∂L
∂Y , which

directly gives you the formula of income effect!
(In fact, the more general way to do all the derivations is to total differentiate FOCs
w.r.t w and Y in the matrix form and then to solve the system)
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Second Order Condition
▷ As we are dealing with constrained optimization, we examine how

the objective function changes according to a vector of
budget-neutral variations: (dC,dL) = (−w ,1)dL (because we
need dC = −wdL for budget not changing)

▷ The second-order effect of such a variation is
(−w ,1)

[
UCC UCL
ULC ULL

] [
−w
1

]
= w2UCC − 2wUCL + ULL < 0

▷

[
UCC UCL
ULC ULL

]
is the Hessian matrix of the utility function

▷ Quadratic form (v ′Qv ) here tells about the steepness or curvature of
the specific path following our budget-neutral variations

▷ We can prove this inequality holds with strictly quasi-concave (s.q.c)
utility function (see last year’s slide)

▷ In fact, the concavity assumed already ensures the Hessian matrix to
be negative semi-definite, i.e. the quadratic form to be negative for
all non-zero vectors v

▷ That’s why FOCs are both necessary and sufficient to characterize
an interior ”preference maximal” with s.q.c!
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Why Declined Working Hours?
Boppart and Krusell (2020): w ↑ and income effect dominated!

(Their utility function: u(c,h) = (c·v(hcν/(1−ν)))
1−σ−1

1−σ ; with σ > 1, ν > 0; c
ν

1−ν captures a
stronger income effect: an added ”penalty” to working (since v is a decreasing function);
They thus support the Keynes’ speculation: people will work 15-hour week in the future!)
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Why Declined Labor Supply for Young Men?
Aguiar et al. (2021): better recreational compute use and gaming increases
efficiency of leisure time

(Here consider an extremely simple case: U(C,L) = log(C) + θ log(L) and recreational
technology increases θ; Intuition: increased efficiency is similar to reduce price, generating

substitutions effects)
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Why Declined Labor Supply for Young Men?
Aguiar et al. (2021): split entire leisure time into various leisure activities; find recreational
computing is a ”leisure luxury” for younger men

(Extend our simple utility function: U(C, l1, l2) = log(C) + θ1 log(l1) + θ2 log(l2), where
L = l1 + l2; Intuition: increased efficiency like reduced price generates ”leisure income

effect” and ”leisure substitution effect”)
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Bring Sociology into Economics
Thorsten Veblen: consumption is motivated by a desire for social standing,
and other social classes strive to emulate the leisure class
Bowles and Park (2005) brings this idea into the labor-leisure framework to see
how emulated consumption affect labor supply: U = (C − Cr ,L)

(Intuition: an increase in reference consumption Cr increases marginal utility of
consumption, requiring more consumption and less leisure to balance the tradeoff)
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What Utility Functions Have No Income Effect?

▷ Quasi-linear utility: U(C,L) = C + V (L)

▷ E.g. U(C,L) = C + L1+ 1
ε

1+ 1
ε

▷ The optimality condition: L∗ = w ε

▷ Thus the optimal choice of L∗ is not a function of income (or more
accurately, not a function of consumption c)

▷ In fact, with any quasilinear utility, we have ∂Lm

∂Y = 0

▷ Intuition:
▷ marginal utility of leisure is not a function of consumption
▷ marginal utility of consumption is constant

▷ Further, εu
L,w = εc

L,w = ∂ log L/∂ logw = ε

▷ Thus wage elasticity of labor supply is a constant (purely through the
substitution effect)
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What Utility Functions Have No Wage Effect?

▷ Macroeconomists like to use utility functions with a form close to
u(c, l) = cv(l), where v(·) satisfies the usual conditions

▷ Recall FOC: ucw = ul

▷ ⇒ v(l)w = cv ′(l)

▷ If there is no wealth, i.e. y = 0, then c = wh = w(1 − l)

▷ ⇒ v(l)w = w(1 − l)v ′(l) ⇒ v(l) = (1 − l)v ′(l), i.e. l∗ does not
depend on w as income and substitution effects cancel out

▷ If y > 0, v(l) = (1 − l + y/w)v ′(l),
▷ i.e. an increase in wage will reduce leisure as substitution effect

dominates (intuition: the income effect is now smaller with y > 0)
▷ In macro models, y and w will always grow in the same speed, so

y/w is a constant and l∗ will be stationary

38 / 42



What Utility Functions Have Declined Working Hour?

▷ MaCurdy (1981): u(c,h) = c1−σ−1
1−σ − ψ h1+1/θ

1+1/θ (σ, θ ≥ 0)

▷ FOC: wc−σ = ψh1/θ

▷ ⇒ h∗ = ψ
−1

σ+1/θ w
1−σ

σ+1/θ

▷ If σ > 1, h∗ decreases with w increase, i.e. income effect
dominates substitution effect

▷ If σ = 1 , it return backs to previous case of perfect offsetting
▷ To see this: first obtain c1−σ−1

1−σ = log(c) when σ = 1; then take
exponential of u to obtain a form of cv(l)

▷ General form studied in King et al. (1988) and Boppart and Krusell (2020)
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What Explain Declined Labor Supply for Young Men?
▷ Aguiar et al. (2021) suggests better recreational computing and gaming

▷ Agent now chooses between multiple leisure activities in addition
to the work-leisure tradeoff: e.g.

max
c,{ℓ1,...,ℓI},H

U(c, v(ℓ; θ))

s.t. c ≤ wH and ∑I
i=1 ℓi + H ≤ 1, where v(ℓ; θ) = ∑I

i=1
(θi ℓi )

1−(1/ηi )

1−(1/ηi )

▷ Opportunity cost for each leisure activity is not only wage, but also
the utility from choosing other activities

▷ They estimate this leisure demand system and find r.c.g is a ”leisure
luxury” specially for younger men

▷ (1% increase in leisure time associated with about a 2.5% increase in
r.c.g. time)

▷ While the key idea is very simple, the model derivation and
estimation are nontrivial (see last year’s slides)

40 / 42



Add Emulated Consumption into the Framework

▷ Assume u = u (co,h) = u [(wh − vcr ) ,h]
▷ cr ≡ w r hr + y is the consumption level of some rich reference group
▷ v measure the intensity of the relevant social comparisons

▷ Note that vcr here plays the same role as a negative non-wage
income y , i.e. a debt

▷ If the utility function is Quasi-linear in h, e.g. u = ln co − δh
▷ Optimal solution: h∗ = 1/δ + vcr /w

▷ dh∗/dcr ∝ −v (ucoh + wucoco) is positive (same is dh∗/dv )

▷ With many income groups each of which takes the next richest
group as its reference group, an increase in consumption by the top
rich generates a downward cascade of Veblen effects
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