
Labor Supply: Income and Substitution Effects

Xuanli Zhu
Keio University

Fall, 2023

1 / 33



Roadmap

1. Introduction

2. Some facts

3. Before the theory

4. Theory on labor-leisure choice

5. Some applications of the theory



Introduction

⊲ We decide
⊲ whether to work or not
⊲ how many hours to work
⊲ how hard to work
⊲ when to quit a job
⊲ which skills to acquire
⊲ which occupations to enter

⊲ How?

⊲ What factors affect these decisions?

⊲ (Q: how many hours do you work in a part-time job? What if now
the wage doubled or tripled?)
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Measures of labor supply

⊲ Extensive margin: labor force participation rate
⊲ Labor force (LF) = employed (E) + unemployed (U)
⊲ Labor force participation rate = LF / working age population

⊲ Intensive margin: working hour per worker
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Labor force participation rate - Male
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Labor force participation rate - Male by age
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Labor Force Participation Rate - Female (prime-age)
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Working hour per worker - Trend
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Working hour per worker - Cross-country
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What are the potential drivers of labor supply?

⊲ We focus on ”economics” factors

⊲ Wage; Income; Wealth

⊲ Leisure activities; Housework

⊲ Taxes; Welfare policies/programs

⊲ Economics models are games where the players act with elements
and under rules, so that we can study how players behave with
different elements and rules

⊲ ”Mercenary” items are the easiest ones to be set into the game and
economists typically believe they are the most powerful factors

⊲ But even culture, belief, and identity can be modeled and studied
in economics models, though they require more advanced techs
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Roy Framework

⊲ Think about a setting of either work or home production

⊲ Two jobs:
⊲ Work in labor market, receive whm

⊲ Work at home and produce phh

⊲ A person i works in labor market if

whm
i > phh

i

⊲ People who are relatively more productive in the market will work

⊲ Total labor supply depends on relative price w/p and joint
distribution of human capital F (hm, hh)

⊲ More in next week
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General principles for specifying economics models

⊲ Agents: decision-markers
⊲ 1 Households (preference; endowment)
⊲ 2 Firms (technology)
⊲ 3 Government (policy instruments)

⊲ Goods: outputs and inputs
⊲ Output for consumption or production
⊲ Inputs: capital, labor (time), ...
⊲ Homogenous or heterogenous

⊲ Decisions: optimizing some objectives
⊲ Static or dynamic decisions

⊲ Equilibrium: how agents interact and trade goods in the markets
⊲ One market for one good (to clear)
⊲ Partial or General equilibrium
⊲ Competitive or imperfect competition
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Can workers choose working hours?

⊲ Don’t employers set the hours of work? (e.g. Ford in 1926)

⊲ Workers can choose part-time vs full-time

⊲ Workers can select different industries/occupations/firms with
different full-time and over-time working hours

⊲ Workers can shirk during their working time

⊲ Thus employer requirements eventually reflect employee
preferences, esp. in the long-run

⊲ Even cultural and political movements can be merely proximate
forces with preference changes in behind

⊲ But firms (labor demand) surely play a role in short-run (e.g.
business cycle) and cross-sectional (e.g. law or IB firms) variations
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At a high level

⊲ The neoclassical theory of labor supply (as individual choice)

⊲ An application of consumer theory: choose between two goods
(consumption and leisure)

⊲ The tricky part: simultaneously choose consumption and ”income”

⊲ For a more general setting of multiple goods/endowments here

⊲ Both math and graphics would do the job here
⊲ Math is more generative and more accurate
⊲ Graphics may be more intuitive

⊲ We abstract from any dynamics (more realistic but more complex)
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Setting

⊲ The agent has preference, i.e. a utility function U(C, L)
⊲ C is consumption of goods and services (with normalized p = 1)
⊲ L is leisure
⊲ Assume U(·, ·) is a strictly increasing and strictly concave (or strictly

quasi-concave definition ; intuition: decreasing marginal return)

⊲ The agent has two endowments:
⊲ Disposable time T : 24 or 16 or 12 hours
⊲ Non-wage income Y : can be 0 or even negative (debt)

⊲ The agent maximize utility by choosing L or working time H
⊲ L + H = T
⊲ Static optimization as no multiple periods and no savings

⊲ Partial equilibrium: wage w is taken as given
⊲ Note the implicit assumption: w does not depend on H
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Optimization

⊲ maxC,L U(C, L) subject to C = w(16 − L) + Y

⊲ Note the budget constraint can be also written as
16w + Y = Lw + C

⊲ 16w + Y can be referred to as ”full income”
⊲ The price (or opportunity cost) for L is w
⊲ A rise in w increases both full income and cost of leisure

⊲ Alternatively: maxC,H V (C,H) = U(C,T − H) s.t. C = wH + Y
⊲ Can also set H in V () as a negative term, i.e. disutility

⊲ (Q: what are the endogenous (playable) variables and exogenous
(environmental) variables in this model?)
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Derviation
⊲ maxC,L U(C, L) s.t. C = w(16 − L) + Y

⊲ Lagrangian: L = U(C, L)− λ (C − w(16 − L)− Y )

⊲ Assume an interior optimum, the First Order Conditions (FOCs):
LC =UC − λ = 0
LL =UL − λw = 0
Lλ =C − w(16 − L)− Y = 0

⊲ Tradeoff: UL(C∗, L∗) = wUC(C∗, L∗)
⊲ Note UL/UC is the marginal rate of substitution (MRS), which

equates to w , the relative price

⊲ (Marshallian) Demand functions:
L = Lm (w ,Y )

C = Cm (w ,Y )

⊲ Lagrange multiplier: λ = UC = λm (w ,Y ) (interpreted as marginal
utility or ”shadow price” of income)
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Indifference curves and budget constraint curve
Q: What if the indifference curves are concave to the origin?

17 / 33



Not-work is a corner solution (UL > wUC)
reservation wage
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Income effect (an increase in Y )
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Income + Substitution effect (an increase in w )
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Income + Substitution effect (an increase in w )
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The dual problem

⊲ Recall previously we have U(C∗(w ,Y ), L∗(w ,Y )) = V (w ,Y ),
where V is the indirected utility function

⊲ The dual problem is to minimize the expenditure to achieve some
utility U: Y (w ,U) = minC,L C − w(16 − L) s.t. U(C, L) ≥ U

⊲ Referred as ”excess expenditure function”
⊲ Note previously we have Y = C − w(16 − L), but now Y is no

longer a parameter but the value of the objective function
⊲ (Q: how to solve this by using the graph?)

⊲ L = C − w(16 − L)− λ (U(C, L)− U)

⊲ Hicksian (Compensated) demand functions:
C = Ch (w ,U)

L = Lh (w ,U)

⊲ Expenditure function: Y (w ,U) = Ch (w ,U)− w

16 − Lh (w ,U)
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Derive Slutsky equation
⊲ Expenditure function: Y (w ,U) = Ch (w ,U)− w


16 − Lh (w ,U)



⊲ Sheppard’s lemma: Yw (w ,U) = −(16 − Lh(w ,U)) = −Hh(w ,U)
(use Envelop theorem)

⊲ The Hicksian and Marshallian demand functions for leisure are
related to each other: Lh (w ,U) ≡ Lm (w ,Y (w ,U))

⊲ Differentiating:
∂Lh

∂w
=

∂Lm

∂w
+

∂Lm

∂Y
∂Y
∂w

⊲ Slutsky equation:
∂Lm

∂w
=

∂Lh

∂w
Substitution Effect (-)

+
∂Lm

∂Y


16 − Lh



  
Income Effect (+)
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Income/Wealth effect

⊲ Slutsky equation:
∂Lm

∂w
=

∂Lh

∂w
+ H

∂Lm

∂Y


w  

Income Effect (+)

⊲ Income elasticity of leisure demand εL,Y = ∂Lm

∂Y
Y
L = ∂ ln Lm

∂ lnY

⊲ Leisure is generally regarded as a normal good, i.e. 0 < εL,Y ≤ 1
(inferior good if εL,Y ≤ 0; luxury good if εL,Y > 1)

⊲ Quasilinear utility: U(C, L) = C + V (L), where there is no income
effect, i.e. ∂Lm

∂Y = 0 an example more general case (Q: what activities?)

⊲ Cases of observing income effect: lottery; bequest; government
cash transfer (Q: when?)
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Wage effect
⊲ Slutsky equation:

∂Lm

∂w
=

∂Lh

∂w
Substitution Effect (-)

+
∂Lm

∂Y
H

  
Income Effect (+)

⊲ Elasticity form: εL,w
Uncompensated elasticity

= εc
L,w

Compensated elasticity

+wεL,Y
H
Y

(Q: does λ change when ∂Lh

∂w ? Frisch elasticity )

⊲ Wage changes (more generally, relative price changes) due to
various reasons (e.g. income tax; minimum wage) are way more
likely to be observed

⊲ The net effect depends on the relative size of two effects

⊲ Estimated results in the microeconomics literature are rather mixed
(εH,w ∈ [−0.1, 0.2] and εc

H,w ∈ [0.1, 0.3]) and vary across different
demographics (Q: how to write εH,w using εL,w )
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What do ∂Lh

∂w and ∂Lm

∂Y depend on?
⊲ Slutsky equation in utility terms: derivation

∂L
∂w

=
UC − (ULC − wUCC)(T − L)

ULL + w2UCC − 2wULC

⊲ The denominator is the SOC of the problem and thus negative
given concavity details

⊲ Thus ∂L
∂w ∝ −UC + (ULC − wUCC)H

⊲ −UC captures the substitution effect, which is proportional to the
marginal utility of consumption

⊲ (ULC − wUCC)H captures the income effect, which depends on the
cross-derivative and the concavity of the utility function in
consumption

⊲ Now you can see why for Quasi-linear utility functions the income
effect is 0 (ULC = 0;UCC = 0)
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A plausible graph of individual labor supply

Q: How would −UC , ULC , and UCC change with increase in C?
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What utility functions have no wage effect?
⊲ Macroeconomists like to use utility functions with a form close to

u(c, l) = cv(l), where v(·) satisfies the usual conditions more general

⊲ Recall FOC: ucw = ul

⊲ ⇒ v(l)w = cv ′(l)

⊲ If there is no wealth, i.e. y = 0, then c = wh = w(1 − l)

⊲ ⇒ v(l)w = w(1 − l)v ′(l) ⇒ v(l) = (1 − l)v ′(l), i.e. l∗ does not
depend on w as income and substitution effects cancel (Q: show
this with previous decomposition)

⊲ If y > 0, v(l) = (1 − l + y/w)v ′(l), i.e. an increase in wage will
reduce leisure as substitution effect dominates (intuition: the
income effect is now smaller with y > 0)

⊲ In macro models, y and w will always grow in the same speed, so
y/w is a constant and l∗ will be stationary
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What utility functions have declined working hour?

⊲ MaCurdy (1981): u(c, h) = c1−σ−1
1−σ − ψ h1+1/θ

1+1/θ (σ, θ ≥ 0)

⊲ FOC: wc−σ = ψh1/θ

⊲ ⇒ h∗ = ψ
−1

σ+1/θ w
1−σ

σ+1/θ

⊲ If σ > 1, h∗ decreases with w increase, i.e. income effect dominates
substitution effect (Q: show this with previous decomposition)

⊲ If σ = 1 , it return backs to previous case of perfect offsetting (Q:
can we write the utility function in this case as cv(l)?)

⊲ General form studied in Boppart and Krusell (2020) BK class ,
through which the authors support the Keynes’ speculation:
people will work 15-hour week in the future
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What can explain declined labor supply for young men?

⊲ Aguiar et al. (2021) suggests better recreational computing and
gaming

⊲ Agent now chooses between multiple leisure activities in addition
to the work-leisure tradeoff (e.g. maxc,{ℓ1,...,ℓI},H U(c, v(ℓ; θ)) s.t.

c ≤ wH and ∑I
i=1 ℓi + H ≤ 1, where v(ℓ; θ) = ∑I

i=1
(θi ℓi )

1−(1/ηi )

1−(1/ηi )
)

⊲ Opportunity cost for each leisure activity is not only wage, but also
the utility from choosing other activities

⊲ They estimate this leisure demand system and find r.c.g is a ”leisure
luxury” specially for younger men (1% increase in leisure time
associated with about a 2.5% increase in r.c.g. time)

⊲ While the key idea is very simple, the model derivation see Appendix

and estimation are nontrivial
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Bring Sociology into Economics

⊲ Thorsten Veblen proposed that consumption is motivated by a
desire for social standing (along with for the enjoyment of the
goods and services per se) and the the leisure class’ establish the
standards for the rest

⊲ But why is it the consumption of the ’leisure class’ that is emulated
rather than their leisure?

⊲ Consumption is a more visible, i.e. costly signaling
⊲ Consumption and leisure can be complementary

⊲ Bowles and Park (2005) brings this idea into the labor-leisure
framework
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Add emulated consumption into the framework

⊲ Assume u = u (co, h) = u [(wh − vcr ) , h]
⊲ cr ≡ w r hr + y is the consumption level of some rich reference group
⊲ v measure the intensity of the relevant social comparisons

⊲ Note that vcr here plays the same role as a negative non-wage
income y , i.e. a debt

⊲ If the utility function is Quasi-linear in h, e.g. u = ln co − δh
⊲ Optimal solution: h∗ = 1/δ + vcr /w

⊲ dh∗/dcr ∝ −v (ucoh + wucoco) is positive (same is dh∗/dv )

⊲ With many income groups each of which takes the next richest
group as its reference group, an increase in consumption by the top
rich generates a downward cascade of Veblen effects
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Appendix
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Concavity and Quasi-concavity
⊲ Definition. We say a function f : Rn → R is concave if, for any

x , y ∈ Rn and any λ ∈ [0, 1], we have:
f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y).

⊲ Definition. We say a function f : Rn → R is quasi-concave if, for
any x , y ∈ Rn and any λ ∈ [0, 1], we have
f (λx + (1 − λ)y) ≥ min{f (x), f (y)}

⊲ Note λf (x) + (1 − λ)f (y) ≥ min{f (x), f (y)}, so quasi-concavity is
a weaker condition than concavity

⊲ Strictly concave or quasi-concave means replacing ≥ with >

⊲ Example of strictly concave function: U(x , y) = xαy1−α

(Cobb-Douglas)

⊲ Example of concave function: U(x , y) = ax + by (Linear)

⊲ Example of quasi-concave but not concave function:
U(x , y) = min(ax , by) (Leontief)
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Concavity and Second Derivative
⊲ Assume a univariate function f : R → R has f ′′(x) ≤ 0 for all x ∈ R

⊲ Recall Taylor’s Expansion:
f (x) = f (x0) + f ′(x0)(x − x0) +

1
2 f ′′(ξ)(x − x0)

2, where ξ is some
point between c and x

⊲ Since f ′′(x) ≤ 0, the last term is non-positive

⊲ Let x0 = λx1 + (1 − λ)x2 and take x = x1, we have
f (x1) ≤ f (x0) + f ′ (x0) ((1 − λ) (x1 − x2))

⊲ Simiarly, taking x = x2, f (x2) ≤ f (x0) + f ′ (x0) (λ (x2 − x1))

⊲ Multiplying f (x1) by λ and f (x2) by 1 − λ and adding, we have
λf (x1) + (1 − λ)f (x2) ≤ f (x0) = f (λx1 + (1 − λ)x2)

⊲ For multivariate functions, the requirement is more complex: we
need the Hessian matrix H to be negative semi-definite
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General economy
⊲ Consumer comes to the market with initial endowments of n + 1
goods {x0

0 , x
0
1 , . . . , x0

n}

⊲ Market sets prices of p0, p1, . . . , pn for these goods

⊲ Consumer trade in the markets and maximize utility by buying and
selling goods: maxU (x0, x1, . . . , xn) s.t. ∑n

i=0 pix0
i = ∑n

i=0 pixi

⊲ L = U (x0, . . . , xn) + λ

∑ pix0

i − ∑ pixi


⊲

L0 = U0 − λp0 = 0
L1 = U1 − λp1 = 0

...
Ln = Un − λpn = 0

Lλ = ∑ pix0
i − ∑ pixi = 0

⊲ xi = xm
i


p0, . . . , pn, x0

0 , . . . , x0
n


i = 0, . . . , n
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General economy

⊲ Set the good x0 as numeraire (i.e., p0 = 1) and the amount of x0
0 as

the excess expenditure (money income)

⊲ The dual problem: e = min∑n
i=0 pixi − ∑n

i=1 pix0
i

s.t. U (x0, . . . , xn) = U

⊲ Excess expenditure function (indirect ”endowment function”):
e

p1, . . . , pn, x0

1 , . . . , x0
n ,U


= ∑n

i=0 pixh
i − ∑n

i=1 pix0
i

⊲ ∂e
∂pi

= xh
i − x0

i

⊲ xh
i (p1, . . . , pn,U) = xm

i


p1, . . . , pn, e, x0

1 , . . . , x0
n


⊲
∂xh

i
∂pj

=
∂xm

i
∂pj

+
∂xm

i
∂e

∂e
∂pj

⊲
∂xm

i
∂pj

=
∂xh

i
∂pj

+
∂xm

i
∂e


x0

j − xh
j
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Reservation wage

⊲ Recall wUC − UL < 0 for not-work agents

⊲ We can define the reservation wage w∗ by w∗ = UL(Y ,T )
UX (Y ,T )

, i.e. the
wage that is just high enough to induce the agent to supply a tiny
unit of labor

⊲ Examples: vendors in sports stadium; construction workers

⊲ Alternatively, since now C = Y , reducing Y can increase UX and
induce labor supply
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Derive Slutsky equation using utility function
⊲ Total differentiating UL

UC
= w with respect to w

⊲
UC

∂UL
∂w −UL

∂UC
∂w

U2
C

= 1 ⇒ ∂UL
∂w − UL

UC

∂UC
∂w = UC ⇒ ∂UL

∂w − w ∂UC
∂w = UC

⊲ ⇒ ULL
∂L
∂w + ULC

∂C
∂w − w(UCC

∂C
∂w + ULC

∂L
∂w ) = UC

⊲ From C = (T − L)w + Y ⇒ ∂C
∂w = T − L − w ∂L

∂w

⊲ ⇒ ULL
∂L
∂w + (ULC − wUCC)(T − L) + w2UCC

∂L
∂w − 2wULC

∂L
∂w = UC

⊲ ⇒ ∂L
∂w = UC−(ULC−wUCC)(T−L)

ULL+w2UCC−2wULC

⊲ Note that you can totally differentiating w.r.t. Y to get ∂L
∂Y , which

directly gives you the formula of income effect! (In fact, the more
general way to do all the derivations is to total differentiate FOCs
w.r.t w and Y in the matrix form and then to solve the system)
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Second Order Condition
⊲ As we are dealing with constrained optimization, we examine how
the objective function changes according to a vector of
budget-neutral variations: (dC, dL) = (−w , 1)dL (because we
need dC = −wdL for budget not changing)

⊲ The second-order effect of such a variation is
(−w , 1)


UCC UCL
ULC ULL

 
−w
1


= w2UCC − 2wUCL + ULL < 0

⊲


UCC UCL
ULC ULL


is the Hessian matrix of the utility function

⊲ Quadratic form (v ′Qv ) here tells about the steepness or curvature of
the specific path following our budget-neutral variations

⊲ We can prove this inequality holds with strictly quasi-concave (s.q.c)
utility function (see next slide)

⊲ In fact, the concavity assumed already ensures the Hessian matrix to
be negative semi-definite, i.e. the quadratic form to be negative for
all non-zero vectors v

⊲ That’s why FOCs are both necessary and sufficient to characterize
an interior ”preference maximal” with s.q.c!
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S.Q.C and SOC
⊲ Assume u : Rn → R is strictly quasi-concave

⊲ Let x∗ ∈ Rn be a critical point where the FOCs are satisfied

⊲ Let t be any non-zero vector such that p · t = 0, i.e., t is tangent to
the budget constraint (p · x = I)

⊲ Pick two points, x1 = x∗ + t and x2 = x∗ − t

⊲ Given s.q.c, for any α ∈ (0, 1),
u (α (x∗ + t) + (1 − α) (x∗ − t)) > min {u (x∗ + t) , u (x∗ − t)}

u (x∗) > min {u (x∗ + t) , u (x∗ − t)}

⊲ Using the Taylor series expansion ( → 0):
u (x∗ ± t) ≈ u (x∗)± t ′Du (x∗) + 1

2 2t ′D2u (x∗) t

⊲ Note that the second linear term is 0 under FOCs, and thus the
quadratic term, t ′D2u (x∗) t , must be negative for s.q.c to hold!
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Example of Quasi-linear utility

⊲ U(C, L) = C + L1+ 1
ε

1+ 1
ε

⊲ The optimality condition: L
1
ε = w

⊲ Note that the optimal choice of L is not a function of income (or
more accurately, not a function of consumption c), i.e. εu

L,w = εc
L,w

⊲ εu
L,w = ∂ log L/∂ logw = ε

⊲ Thus wage elasticity is a constant, i.e. this utility function has a
constant elasticity of labor supply (purely through the substitution
effect)
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Derive Frisch (λ-constant) elasticity
⊲ FOCs:

UC = λ

UL = λw

⊲ Define Frisch demand Lf (w ,λ) implicitly by UL(Lf (w ,λ)) = λw
(same for Cf with p = 1)

⊲ Totally differentiating while holding a constant λ:
UCC UCL
ULC ULL


·


∂Cf

∂w f

∂Lf

∂w


=


0
λ



⊲


∂Cf

∂w
∂Lf

∂w


=


UCC UCL
ULC ULL

−1  0
λ



=
1

UCCULL − U2
CL


ULL −UCL
−ULC UCC

 
0
λ



=




λUCL

UCCULL−U2
CL

λUCC
UCCULL−U2

CL



 =




UCUCL

UCCULL−U2
CL

UCUCC
UCCULL−U2

CL
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A comparison among elasticities
⊲ εu

L,w ≥ εc
L,w since the income effect is positive

⊲

1
εc

L,w
− 1

εf
L,w

=
ULL + w2UCC − 2wULC

UC
−

UCCULL − U2
CL

UCUCC

=
1

UC


w2UCC − 2wULC +

U2
CL

UCC



⊲ The definition of λ-constant elasticity implies that ULL ≤ U2
CL

UCC
.

⊲

w2UCC − 2wULC +
U2

CL
UCC

≤ w2UCC − 2wULC + ULL

= SOC
≤ 0

⊲ Thus εf
l,w ≤ εc

l,w (Q: for what utility function does equality hold?)
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KPR class of utility functions
⊲ King, Plosser, Rebelo (1988) show that balanced growth with
constant hours worked is obtained only if the period utility

function is u(c, h) =


(c·v(h))1−σ−1

1−σ if σ ∕= 1
log(c) + log v(h) if σ = 1

⊲ Note that this is just putting cv(h) into a CRRA utility function

⊲ Two special cases

⊲ 1) u(c, h) =


(c(1−h)κ)1−σ

1−σ if σ ∕= 1
log(c) + κ log(1 − h) if σ = 1

⊲ Cobb-Douglas, i.e. elasticity of substitution between c and l is 1

⊲ 2) u(c, h) = log(c)− ψ h1+1/θ

1+1/θ (especially common!)
⊲ Constant Frisch elasticity (εf

t =
uh

ht


uhh−

u2
hc

ucc

 ) when θ > 0, which will

be akin to the expression for IES (i.e. inverse of risk aversion)
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BK class of utility functions
⊲ Boppart & Krusell (2020) extend the KPR class to allow working
hour change at a constant rate:

u(c, h) =


(c·v(hcν/(1−ν)))

1−σ−1
1−σ if σ ∕= 1

log(c) + log(v(hcν/(1−ν))) if σ = 1

⊲ For ν > 0, c
ν

1−ν captures the stronger income effect: an added
”penalty” to working (since v is decreasing)

⊲
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GHH preference

⊲ Another popular utility specification for macroeconomist is the
GHH class (Greenwood, Hercowitz, Hoffman 1998):

u(c, h) =







c−ψ h1+1/θ

1+1/θ

1−σ

1−σ if σ ∕= 1

log


c − ψ h1+1/θ

1+1/θ


if σ = 1

⊲ Note that this form looks similar to 2nd special case in KPR class
⊲ Like KPR, GHH also features non-separability between consumption

and leisure/labor (when σ ∕= 1)
⊲ Unlike KPR, GHH preferences are not consistent with balanced

growth because it eliminates the income/wealth effect on labor
supply

⊲ FOC: ψhθ = w
⊲ Thus labor is only a function of the wage (not of consumption)
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ABCH2021: Preferences
⊲ Assume U(c, v(h; θ, ξ)) with weak separability

⊲ v (hk ; θ, ξk ) = ∑I
i=1

(θi ξik hik )
1−(1/ηi )

1−(1/ηi )
(k index individuals)

⊲ h = {h1, . . . , hI} is time spent on I leisure activities
⊲ θ = {θ1, . . . , θI} is a vector of technology shifters
⊲ ξ = (ξ1, . . . , ξI) are idiosyncratic preferences over activities
⊲ ηi > 0 governs the diminishing returns

⊲ maxc,{h},N{U(c, v(h; θ, ξ)) + λ(wN − c)},
s.t. ∑I

i=1 hi + N ≤ 1, N ∈ N

⊲ FOC: Uc = λ; Uv vi = ω ∀i , where vi = ∂v/∂hi

⊲ Denote ω̂ ≡ ω/Uv as normalized (shadow) price of time, which is
sufficient to determine the allocation of activities

⊲ The analysis is done for a fixed λ (abstract from income effect)
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ABCH2021: Leisure Engel Curves
⊲ Subproblem: v(H; θ, ξ) ≡ max{hi} v (h1, . . . , hI ; θ, ξ)
s.t. ∑i hi ≤ H

⊲ vH(H; θ, ξ) = ω̂

⊲ FOC: hi = (θi ξi)
ηi−1 ω̂−ηi

⊲ ∂ ln hi /∂ ln ω̂ = −ηi
⊲ Note if θi or ξi increase or decrease hi will depend on whether

ηi ≷ 1 (Q: can you think a case ηi < 1?)

⊲ H = ∑i hi = ∑i (θi ξi)
ηi−1 ω̂−ηi

⊲ Differentiating w.r.t H : ∂ lnvH
∂ lnH = −1

∑i si ηi
= −1

η̄ , where si = hi /H

⊲ Similarly: ∂ lnvH
∂θi

= ∂ lnvH
∂ξi

= si (ηi−1)
η̄ (Q: typo?)

⊲ ”Leisure Engel curve”: βi ≡ ∂ ln hi
∂ lnH = ∂ ln hi

∂ lnvH

∂ lnvH
∂ lnH = ηi

η̄
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ABCH2021: Inferring Technological Progress

⊲ Let j ∕= i be a ”reference activity” with no changes in θj (e.g.
sleeping)

⊲ From FOC: ln hi
ηi

− ln hj
ηj

=


ηi−1
ηi


ln θi ξi −


ηj−1

ηj


ln θj ξj

⊲ Difference over time (with invariant ξs):
∆ ln hi

ηi
− ∆ ln hj

ηj
=


ηi−1

ηi


∆ ln θi

⊲ ∆ ln θi =
1

βi η̄−1


∆ ln hi − βi

βj
∆ ln hj


(use ηi = βi η̄)

⊲ With estimated ηs and observed hs, we can identify ∆ ln θi
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ABCH2021: Technology and Shadow Value of Time

⊲ U(c, v(h; θ, ξ)) = U(c,v(H; θ, ξ)); c = C(λ,v(H; θ, ξ)) given by
inverting Uc = λ

⊲ Uv vH = ω (can thus write ω(H;λ, θ, ξ))

⊲ ⇒ −


Uvv−U2
cv /Ucc

Uv


vHH = 1

 −
1
η̄ , where  ≡ − ∂ lnH

∂ lnω

⊲ ⇒

∂ lnω

∂ ln θi
=


Uvv − U2

cv /Ucc

Uv


vθi θi +

∂ lnvH

∂ ln θi

=


Uvv − U2

cv /Ucc

Uv


sivHH +

si (ηi − 1)
η̄

=
si (βi  − 1)



⊲ ⇒ ∆ lnω ≈ ∂ lnω
∂ ln θi

∆ ln θi =
si



βi −1
βi η̄−1

 
∆ ln hi − βi

βj
∆ ln hj
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ABCH2021: Response of Labor Supply to Technology

⊲ FOC for N : Uv vH = ω = λw

⊲ Recall we hold λ constant, thus same as lnω(H; θ, ξ)− lnw

⊲ Differentiating: − ∂ lnH
∂ lnw = − ∂ lnH

∂ lnω =  (i.e. Frisch elasticity of leisure)

⊲ ⇒ d lnH
d ln θi

= − ∂ lnω/∂ ln θi
∂ lnω/∂ lnH =  ∂ lnω

∂ ln θi
= si (βi  − 1)

⊲ ⇒ d lnN
d ln θi

= −ϕIn
∂ lnω
∂ ln θi

= −
 ϕIn




si (βi  − 1) where

ϕIn ≡ −(H/1 − H) (intensive-margin Frisch elasticity)
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ABCH2021: Response of Labor Supply (Extensive)
⊲ Assume N = {0, n̄} and Ucv = 0 (additive separability)

⊲ An individual chooses employment if λwn̄ ≥ ∆U , where
∆U ≡ U(c,v(1, θ, ξ)− U(c,v(1 − n̄, θ, ξ)) (leisure cost)

⊲ We can define reservation wage: wR = ∆U
λn̄

⊲ Taking a second-order approximation of ∆U around H = 1 − n̄:

∆U ≈ Uv vH n̄ +
1
2


Uvv v2

H + Uv vHH


n̄2 = ω


1 − 1

2

n̄
1 − n̄


n̄

⊲ Combining: lnwR = lnω + ln

1 − 1

2
n̄

1−n̄


− lnλ

⊲ With a common market wage, fraction employed is
E = Pr


lnwR ≤ lnw


= F (lnw)

⊲ ϕEx ≡ d lnE/d lnw = f (lnw)/F (lnw) (extensive-margin Frisch
elasticity)

⊲ d lnE
d ln θi

= −ϕEx
∂wR

∂ ln θi
= −

 ϕEx



si (βi  − 1) (assume ∂

∂θi
= 0)
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