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Self-introduction
⊲ Research interest: skill, task, inequality, technological change, job search/match
⊲ Currently working on empirical labor studies using job ads data and historical data

A Chinese job ads in 2018 A Japanese accounting in 1910
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How I Started
⊲ Began to do empirical research during my PhD
◦ New question? New theory? New data?

⊲ In China and Japan, the labor data is ... not that good

⊲ I bumped into a seminar talk in which job ads data is used
◦ "Oh I know python I can also do web scraping"

⊲ I went through some materials to learn the most basic ML and NLP tools
◦ Including Econ review papers, CS lecture notes (see my github repo: Guide2EconRA), blogs,

Stack Exchange, sklearn documents, ...
◦ Somehow often akin to econ models: optimization (cost function), tradeoff

(regularization), discrete choice (softmax), MLE (cross-entropy), ...

⊲ I found something interesting in the data and wrote two working papers (2022-2023)
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https://github.com/Alalalalaki/Guide2EconRA


How about Today?
⊲ It’s less difficult to catch up (e.g. RNN, transformer, ...) than I thought!
◦ The basic framework is often no more difficult than graduate economics models ("lego")
◦ The advance/difficulty of the field is very "engineering," but that’s largely not our job

⊲ Learning is not much different
◦ Except now you can ask a transformer decoder "what is a transformer decoder"

⊲ The shocking facts to me after catching up: "That’s It?"
◦ GPT-3 is "almost" no different from BERT
◦ BERT is just a bunch of simple matrix calculations w/o any magics at all

⊲ Do we really need to know these things?
◦ Not that much as recent LLMs often provide the go-to embeddings or classifiers
◦ Yes, if you want to justify your choices well or build story based on the mechanisms
◦ Often, the simple approach just performs very well and more interpretable
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Better Representation ("Embedding") of Texts

(Source: Hands-On Large Language Models)

Early Encoders

⊲ Consistent line: better&efficiently represent the meaning of input texts ("encoder")
and, via which, better&efficiently simulate text generation ("decoder")
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https://www.oreilly.com/library/view/hands-on-large-language/9781098150952/ch01.html


It’s All About "Dimension Reduction" 1

Embedding vectors
100-3,000 dimensionscontinuous

One-hot vectors
30k-1m dimensions

discrete
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It’s All About "Dimension Reduction" 2

⊲ What’s the "dimension" of an economics study?
◦ What do you remember about the last paper/presentation read/listened?

⊲ Economics: low dimensional (quantitative) "story telling"
◦ Care about clean causality but not prediction precisions
◦ E.g. a deep learning algorithm that can perfectly predict wage (though very unlikely to

exist) does not lead to an economics paper

⊲ Embeddings are still too-high-dimensional; Need to reduce it to tell the specific
economics story
◦ Use domain knowledge and NLP tools
◦ That’s why often even simple approaches can work
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Use Text-as-Data to Tell Low-dimensional Economics Story

𝑌 = 𝛽 𝑋 + 𝐶

text-generated variable measures extracted from text

text-generated IV text as controls

⊲ 𝑌 and 𝑋 can be certain indicator, similarity, or other measures of known interests
⊲ Unexpected stylized facts and 𝑋 can be explored by examining the embeddings
⊲ 𝐶 can be any flexible functions with a large set of textual covariates
⊲ Sometimes it can be simply a descriptive story of 𝑌 or 𝑋
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Natural Language Processing (NLP)

⊲ Natural language is a mapping: [high-dimensional, continuous spatio-temporal reality
←→ a lower-dimensional, discrete symbolic system]
◦ A word: a signifier that maps to a signified (idea, concept, entity, instance)
◦ A sequence of words: a set of signifiers that maps to a context
◦ Enable complex communication and human intelligence!

⊲ NLP is to design algorithms to allow computers to "understand" natural language in
order to perform tasks
◦ I.e. how to represent word/words in a form that computer can efficiently process
◦ The problem is that word meaning is endlessly complex
◦ A key idea: distributional hypothesis: meaning of a word can be derived from the

distribution of its contexts
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https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Distributional_semantics


One-hot Vector
⊲ A corpus 𝒞 = {𝐷1 , 𝐷2 , . . . , 𝐷𝑀} is a collection of 𝑀 documents (articles, sentences, ...)

⊲ A document 𝐷𝑚 = {𝑤1 , 𝑤2 , . . . , 𝑤𝑛} is a sequence of tokens (words, subwords, ...)

⊲ All unique tokens in the corpus form a vocabulary set 𝑉 with size |𝑉 |

⊲ Each word 𝑤 ∈ 𝑉 can then be represented as an R|𝑉 |×1 one-hot vector:

𝑤𝑎𝑎𝑟𝑑𝑣𝑎𝑟𝑘 =


1
0
0
...

0


, 𝑤𝑎 =


0
1
0
...

0


, 𝑤𝑎𝑒𝑟 =


0
0
1
...

0


, · · ·𝑤𝑧𝑧𝑧 =


0
0
0
...

1


⊲ Problems:
◦ very high-dimensional and sparse vectors (|𝑉 | ranges from 0.1 to 10 million)
◦ completely independent and no semantic correlations ([𝑤𝑎𝑒𝑟]𝑇𝑤𝑞 𝑗𝑒 = 0)
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https://platform.openai.com/tokenizer
https://en.wikipedia.org/wiki/One-hot


Bag-of-words and Occurrence Matrix

⊲ A document 𝐷𝑚 can thus be written as a matrix X𝑚 = {𝑤1 , . . . , 𝑤𝑛𝑚 } ∈ R|𝑉 |×𝑛𝑚
◦ Hereafter, we abuse the notation to denote 𝑤𝑖 as both a token in a sequence and its

one-hot vector (in practice often use 𝑥𝑖 for inputs)

⊲ Bag-of-words: represent 𝐷𝑚 as a vector x𝑚 ∈ R|𝑉 |×1 by summing up X𝑚 across rows
◦ each entry is the count of a word in 𝑉 in the document
◦ again high-dimensional and sparse

⊲ Stack all documents to form a word-document matrix: X ∈ R|𝑉 |×𝑀
◦ contains co-occurrence info of words (similar words occur in similar contexts)
◦ one can normalize and weight the entries using tf–idf
◦ X𝑇 can be used for document-level classification or regression (each word as a feature)
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https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Tf-idf


Co-occurrence Matrix and LSA

⊲ Alternatively, store co-occurrences of words in an affinity matrix: X ∈ R|𝑉 |×|𝑉 |
◦ for each word, count the number of times another word appears within a window of

certain size across all documents
◦ loop across all word pairs to form the affinity matrix
◦ window size affects what info to encode (syntactic, semantic, topic)

⊲ Latent semantic analysis (LSA): perform SVD on either X (X = UΣV), and take the
submatrix of U1:|𝑉 |,1:𝑘 to be the word embedding matrix

◦ the cut-off index 𝑘 is based on the desired percentage variance captured:
∑𝑘

𝑖=1 𝜎𝑖∑|𝑉 |
𝑖=1

𝜎𝑖

◦ simply a PCA without demeaning (to keep sparse)

⊲ Problems:
◦ computational cost of SVD is 𝑂

(
𝑚𝑛2

)
for a 𝑚 × 𝑛 matrix

◦ optimizing for global reconstruction of the co-occurrence matrix
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https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://cs229.stanford.edu/proj2017/final-reports/5163902.pdf


Word2vec
⊲ Unlike SVD methods, word2vec is iteration-based method and learns co-occurrence
of words via training
◦ eventually encoding the probability of a word given its context
◦ same underlying assumption (linguistics, distributional similarity) as LSA but different

factorization and optimization

⊲ Idea: design a statistical model whose parameters are latent word embedding vectors;
then learn the parameters by matching its predictions to the data
◦ a bit like an econometric model!
◦ but not explicitly modeling DGP so not a generative probabilistic model (like LDA)

⊲ The architecture is a shallow, one-hidden-layer neural network

⊲ Two algorithms (ways of modeling):
◦ continuous bag-of-words (CBOW): predict a center word from context words
◦ skip-gram: predicts context words from a center word
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https://en.wikipedia.org/wiki/Word2vec
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation


Word2vec: CBOW
⊲ For each sentence in the corpus, we can generate a context for each token:
c𝑖 = {𝑤𝑖−𝑚 , . . . , 𝑤𝑖−1 , 𝑤𝑖+1 , . . . , 𝑤𝑖+𝑚}, where 𝑤𝑖 is center word and 𝑚 is window size

⊲ The aim is to find two mappings U ∈ R𝐻×|𝑉 | ("encoder") andW ∈ R|𝑉 |×𝐻 ("decoder")

⊲ U maps the one-hot vectors of a context into an embedding space of 𝐻 dimensions:
{𝑢𝑖−𝑚 = U𝑤𝑖−𝑚 , . . . , 𝑢𝑖−1 = U𝑤𝑖−1 , 𝑢𝑖+1 = U𝑤𝑖+1 , . . . , 𝑢𝑖+𝑚 = U𝑤𝑖+𝑚 ∈ R𝐻}

⊲ W then maps a context vector into a score vector in dimension |𝑉 |:
𝑧 = W𝑢𝑜

𝑖
∈ R|𝑉 | , where 𝑢𝑜

𝑖
=

( 𝑢𝑖−𝑚+...+𝑢𝑖−1+𝑢𝑖+1+...𝑢𝑖+𝑚
2𝑚

)
∈ R𝐻

⊲ Next, pass through 𝑧 into a softmax operator to obtain the predicted conditional
probability: 𝑦̂ = softmax(𝑧) ∈ R|𝑉 | , where 𝑦̂ 𝑗 ≡ 𝑃̂(𝑤 𝑗 |c𝑖) =

exp(𝑧 𝑗)∑|𝑉 |
𝑗′=1 exp(𝑧 𝑗′)

⊲ Lastly, minimize a cross-entropy loss function: −∑|𝑉 |
𝑗=1

𝑦 𝑗 log
(
𝑦̂ 𝑗

)
= − log (𝑦̂𝑖)
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https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Cross-entropy


CBOW

(source: Understanding Bag of Words Models) 15 / 63

https://mlarchive.com/natural-language-processing/understanding-bag-of-words-models/


CBOW and Skip-gram (some good animations here)
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https://medium.com/@bradneysmith/word-embeddings-with-word2vec-from-scratch-in-python-eb9326c6ab7c


Embedding Vectors

⊲ Embedding vectors are vector representations of tokens with fine-grained semantics
and word analogies
◦ The local context prediction task forces the embeddings to encode info useful for

predicting local linguistic environments
◦ Note that word analogy (e.g. 𝑎 : 𝑏 :: 𝑐 :?) is different from word similarity

⊲ Linear structures emerge(!) such that the geometric structure of the embedding space
allows for vector arithmetic: 𝑢𝑘𝑖𝑛𝑔 − 𝑢𝑚𝑎𝑛 + 𝑢𝑤𝑜𝑚𝑎𝑛 = 𝑢𝑞𝑢𝑒𝑒𝑛

⊲ One way to think:
◦ 𝑢𝑘𝑖𝑛𝑔 − 𝑢𝑚𝑎𝑛 encapsulates the "royalty added to maleness" features (as expressed by

differential context probabilities)
◦ 𝑢𝑚𝑎𝑛 − 𝑢𝑤𝑜𝑚𝑎𝑛 encapsulates the "gender difference" features
◦ But unfortunately, no ensure to have any single dimension interpretable
◦ see more explanations and critiques
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https://techs0uls.wordpress.com/2020/03/16/word-similarity-and-analogy-with-skip-gram/
https://kawine.github.io/blog/nlp/2019/06/21/word-analogies.html
https://hackingsemantics.xyz/2019/analogies/


Embedding Vectors in Reduced Dimension: Word Analogy
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Embedding Vectors in Reduced Dimension: Document Similarity

(Source: Clustering and Visualising Documents using Word Embeddings) 19 / 63

https://programminghistorian.org/en/lessons/clustering-visualizing-word-embeddings


Softmax Classification
⊲ Most NLP (extrinsic) tasks can be formulated as classification tasks
◦ classify topics or sentiment; named-entity recognition (NER); ...

⊲ Softmax classification: probability of a word with embedding vector 𝑥 being in class 𝑗:

𝑝
(
𝑦 𝑗 = 1 | 𝑥

)
=

exp
(
𝑊′

𝑗
·𝑥

)
∑𝐶

𝑐=1 exp(𝑊′𝑐 ·𝑥)
◦ 𝑊 ′ ∈ R𝐶×𝐻 is the weight matrix for the classification task
◦ Use training data to train𝑊 ′; Retraining U is risky for small training data

⊲ Use cross-entropy loss function:

−
𝐶∑
𝑗=1

𝑦 𝑗 log
(
𝑝
(
𝑦 𝑗 = 1 | 𝑥

) )
= −

𝐶∑
𝑗=1

𝑦 𝑗 log
©­­«

exp
(
𝑊 ′

𝑗
· 𝑥

)
∑𝐶

𝑐=1 exp (𝑊 ′𝑐 · 𝑥)
ª®®¬ = − log

©­­«
exp

(
𝑊 ′

𝑘
· 𝑥

)
. . .

ª®®¬
◦ 𝑘 is the index of the correct class in training data

⊲ Global loss with regularization: −∑|𝑉 |
𝑖=1

log

(
exp

(
𝑊′

𝑘(𝑖)·𝑥
(𝑖)

)
∑𝐶

𝑐=1 exp(𝑊′𝑐 ·𝑥(𝑖))

)
+ 𝜆∑𝐶·𝐻+|𝑉 |·𝐻

𝑘=1
𝜃2
𝑘
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Neural Networks

𝑎1 = 𝜎(𝑊11𝑥1 + 𝑏1)

activation function

A neuron is a generic computational unit;
𝑧 = 𝑊𝑥 + 𝑏; 𝑎 = 𝜎(𝑧); 𝑠 = 𝑈𝑇 𝑎

(A class of non-linear models that have performed particularly well in deep learning applications like NLP)
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How Neural Networks Work

Let’s see some examples!
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https://playground.tensorflow.org/


Why Neural Networks Work
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Language Models

⊲ How machines do translation or autocomplete?

⊲ A language model is a model that assigns a probability to a sequence of tokens;
𝑃 (𝑤1 , 𝑤2 , · · · , 𝑤𝑚)
◦ uni-gram model: 𝑃 (𝑤1 , 𝑤2 , · · · , 𝑤𝑚) =

∏𝑚
𝑖=1 𝑃 (𝑤𝑖) (independent word occurrences)

◦ bi-gram model: 𝑃 (𝑤1 , 𝑤2 , · · · , 𝑤𝑚) =
∏𝑚

𝑖=2 𝑃 (𝑤𝑖 | 𝑤𝑖−1) (one-step Markov chain)
◦ n-gram model: 𝑃 (𝑤1 , 𝑤2 , · · · , 𝑤𝑚) =

∏𝑖=𝑚
𝑖=𝑛 𝑃 (𝑤𝑖 | 𝑤𝑖−𝑛 , . . . , 𝑤𝑖−1)

⊲ Simplest way to compute the probabilities: frequency
◦ 𝑝 (𝑤2 | 𝑤1) = count(𝑤1 ,𝑤2)

count(𝑤1) (bi-gram); 𝑝 (𝑤3 | 𝑤1 , 𝑤2) = count(𝑤1 ,𝑤2 ,𝑤3)
count(𝑤1 ,𝑤2) (tri-gram)

◦ two main issues: sparsity & storage

⊲ We can also incorporate NNs into a word2vec-like window-based architecture
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Window-based Neural Language Model
𝑦̂ = softmax

(
𝑊 (2) tanh

(
𝑊 (1)𝑥 + 𝑏(1)

)
+𝑊 (3)𝑥 + 𝑏(3)

)
𝒚̂ = softmax (𝑼 𝑓 (𝑾𝒆 + 𝒃1) + 𝒃2)

Embeddings

(But how wide would the window (context) be enough?)
25 / 63



Recurrent Neural Networks (RNN)

ℎ𝑡 = 𝜎
(
𝑊 (ℎℎ)ℎ𝑡−1 +𝑊 (ℎ𝑥)𝑥[𝑡]

)
; 𝑦̂𝑡 = softmax

(
𝑊 (𝑆)ℎ𝑡

)
(Note that same𝑊 (ℎℎ) and𝑊 (ℎ𝑥) used across all layers)

(Inputs can be any length without worrying about the curse of dimensionality!)
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Drawbacks of RNN

1. Computation is slow: because it is sequential, it cannot be parallelized
◦ Modern GPUs are excellent at simple operations in parallel (e.g. AB)
◦ We cannot calculate h2 = 𝜎 (𝑊h1 +𝑈x2) before calculating h1

2. In practice, it is difficult to "recall" information from many steps back due to problems
such as vanishing gradients
◦ RNNs propagate weight matrices from one timestep to the next
◦ During the back-propagation phase, the contribution of gradient values gradually

vanishes as they propagate to earlier timesteps
◦ Use ReLU instead of the sigmoid function can help

both issues had to do with the the depenence on the sequence index ("time")!
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Gated Recurrent Units

𝑟𝑡 = 𝜎
(
𝑊 (𝑟)𝑥𝑡 +𝑈(𝑟)ℎ𝑡−1

)
(Reset gate)

ℎ̃𝑡 = tanh (𝑟𝑡 ◦𝑈ℎ𝑡−1 +𝑊𝑥𝑡 ) (New memory)

𝑧𝑡 = 𝜎
(
𝑊 (𝑧)𝑥𝑡 +𝑈(𝑧)ℎ𝑡−1

)
(Update gate)

ℎ𝑡 = (1 − 𝑧𝑡 ) ◦ ℎ̃𝑡 + 𝑧𝑡 ◦ ℎ𝑡−1 (Hidden state)
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Transformer
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[T]ransformer: ↓BER[T] ↓GP[T]

(Masked)

Prediction head
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Self-Attention Mechanism: Key-Query-Value

"Attention Is All You Need!"
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Multi-head Self-Attention

With a single head of self-attention, one similarity measure q⊤
𝑖
k𝑗

needs to balance different syntactic, semantic, and context dimensions

Split a single self-attention head into multiple heads,
each with different key, query, and value matrices, and then combines the outputs
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Another Great Visualization

(Source: MLA/DeepSeek Attention)
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https://www.youtube.com/watch?v=0VLAoVGf_74


Another Great Visualization

(Source: MLA/DeepSeek Attention)
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https://www.youtube.com/watch?v=0VLAoVGf_74


Other "Lego" Parts
⊲ Position representations:
◦ In self-attention operation, no built-in notion of order (unlike RNN w/ native input order)
◦ Simple solution: 𝑥̃𝑖 = 𝑃𝑖 + x𝑖 , where 𝑃 ∈ R𝑁×𝑑 is a position embedding matrix

⊲ Feed-forward NNs:
◦ If we simply stack self-attention layers, there is no elementwise nonlinearities
◦ After a layer of self-attention, apply FFN independently to each word representation:

ℎFF = 𝑊2 ReLU (𝑊1ℎself-attention + 𝑏1) + 𝑏2 (often,𝑊1 ∈ R5𝑑×𝑑 ,𝑊2 ∈ R𝑑×5𝑑)

⊲ Layer norm:
◦ motivation: reduce uninformative variation in the activations at a layer to pass over
◦ computes statistics: 𝜇̂𝑖 =

1
𝑑

∑𝑑
𝑗=1 h𝑖 𝑗 , 𝜎̂𝑖 =

√
1
𝑑

∑𝑑
𝑗=1

(
h𝑖 𝑗 − 𝜇𝑖

)2 for 𝑖 ∈ {1, . . . , 𝑛}
◦ compute the layer norm: LN (h𝑖) = h𝑖−𝜇̂𝑖

𝜎̂𝑖

⊲ Add (residual connections):
◦ 𝑓residual (h1:𝑛) = 𝑓 (h1:𝑛) + h1:𝑛 (easy to learn from the identity function)
◦ In practice: hpre-norm = 𝑓 (LN(h)) + h or hpre-norm = 𝑓 (LN(h)) + h
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Encoder vs. Decoder

⊲ Decoder: predict a word given all words so far: w𝑡 ∼ softmax ( 𝑓 (w1:𝑡−1))
◦ No sense to look at the future when predicting it (built-in feature of RNNs)

◦ Future masking for representing token 𝑖: 𝛼𝑖 𝑗 , masked =

{
𝛼𝑖 𝑗 𝑗 ≤ 𝑖

0 otherwise

⊲ Encoder: learn the embedding of a single sequence w1:𝑛

◦ No future masking so it is bi-directional
◦ Instead randomly mask 15% tokens (replace 80% of their occurrence with [Mask]) and do

self-supervised training ("masked language modeling")
◦ Also insert a [CLS] token before each input sequence (a summary!) and a [SEP] token

between each two segments

⊲ Both are window-based methods, hence have maximum input sequence length
◦ If fewer than the maximum, padding with [PAD] tokens
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Visualization of BERT Input and Bidirectional Attention
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https://arxiv.org/pdf/1810.04805


In Practice: Encoder

(Source: Dell, M. (2025). Deep Learning for economists. JEL)

Contrastive Learning
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https://pubs.aeaweb.org/doi/pdfplus/10.1257/jel.20241733


In Practice: Classification

(Source: Dell, M. (2025). Deep Learning for economists. JEL)

e.g. BERTopic many techniques in practice!
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https://pubs.aeaweb.org/doi/pdfplus/10.1257/jel.20241733


In Practice: Topic Modeling

(Source: NLP Tutorial: Topic Modeling in Python with BerTopic) 40 / 63

https://miro.medium.com/v2/resize:fit:1400/format:webp/0*CMkR9LeJvOVJ0XGG


In Practice: Topic Modeling

(Source: BERTopic: The Algorithm)
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https://maartengr.github.io/BERTopic/algorithm/algorithm.html
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Deming and Kahn (2018): Extract Skill Demand From Job Ads
⊲ Empirical question: do variations of firms’ skill demand (conditional on occupation)
affect pay?

⊲ Data: US job ads (2010–2015) provided by Burning Glass Technologies

⊲ Method: keyword dictionary based on domain knowledge; job-level indicator
(definitely can do better today but the definition itself can be sometimes tricky)

because they are important
predictors of productivity and wages
... their prominence in the literature
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Wage Regression on Average Skill Indicators
⊲ Wage data from labor survey as only 13% job abs has wage posted

⊲ OLS: log(Wage)𝑜𝑚 = 𝛼 + Skill 𝑜𝑚𝛽′ + Controls + 𝜖𝑜𝑚 (MSA-occupation level)

⊲ Results:
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Zhu (2023): Explore at the Entire Skill/Task Forest

⊲ Empirical question: What are the most important skills/tasks for wages?

⊲ Data: China job ads (2014-2020; self-scrapped) with posted wages

⊲ Method:
1. Feature selection by Lasso with BIC (110,000+→ 3100+)
2. Feature clustering by K-Means on word2vec embeddings (3100+→ 8 groups)
3. Dimension reduction by PLS (3100+→ 8 × 3 = 24)
4. Wage regression and variance decomposition w/ PLS variables or artificial occupations

(1 & 2 is exploratory; No priors at all on what to look!)

⊲ Finding: clusters based on occupational specificity; specific skills/tasks matter most
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Lasso Wage Regression
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Embedding Clustering Visualization (T-SNE): Pooled Occupations
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Embedding Clustering Visualization (T-SNE): Computer Occ Only

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

interaction

vision

brand design

frontier

expertise

research

mature

excellent

insight

definitely

capabilities

perspectives
business

extremely strong

enrichment

trends

basic

method

profound

product design

hardworking

project management
drive

careful

team

patience

like

share

study focused

curiosity

cheerful personality

changes

explore

down-to-earth

serious & responsible

orientation

pursuit

members
language expression

crisis

finance

ip

comics

public relations

editor

forum
wechat

player

depth

resources

select a topic

cars

text

network

brands

copywriting

limited to

tonality

poster

c4d

design

cad dynamic effects

photoshop

cdr
pssketch

artwork

coreldraw

simple

software

office

h5

pictures

web graphic design

basic

css

max

freshmen
internship

graduates

4a
undergraduate

finance

recent graduate

vocational college

overseas

journalists

vocational major

famous
large scale

unified recruitment

undergraduate

ltd.

any major

portfolio

anime

success

14th month pay

five insurance
three meals

two-day weekend

six insurance & one fund

listed company

guru

social insurance

13th month pay

high salary

humanizationeasy

contact

shuttle

lucrativeyoung commission

stock
join

holidays

c++

games
europe & america

engine

outsourcing

unity
3d

performance

numerical value
roles

complete

original painting

rendering

architecture

algorithm
lua

technology

development

modules

client
lead

management

guidance

responsibilitiesleading

landing

outputs website

business core

assistance

management

control

build

develop

integrated planning

strategy

clients

higher

upload

Cluster
1
2
3
4
5
6
7
8

Coef
+
-

47 / 63



Label Clusters by Characterizing Occupation-specificity (𝑇𝐹𝑜′/𝑇𝐹𝑜 )
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Real vs. "Artificial" Occupations
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Dube et al. (2020): Job Text as Controls

⊲ Empirical question: how does variation in rewards (wage) affect duration of task
vacancies (labor supply) in Amazon MTurk?

⊲ Identification problem: omitted variables that affect both (e.g. task difficulty)

⊲ Double Machine Learning estimator (a generalization of FWL, see the textbook of
Chernozhukov et al.):

◦
◦ ⇒ ln(duration) − 𝐸[ln( ˆduration) | 𝑍] = −𝜂

(
ln(reward) − 𝐸[ln( ˆrewards) | 𝑍]

)
+ 𝜖

◦ 𝑍 includes textual covariates (n-grams, topic distributions, Doc2Vec embeddings, ...)
◦ Use sample splitting and training/validation sets to select useful features & best

algorithms
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Autor et al. (2024): Text to Find New Occupations and Link to Tech

⊲ Empirical questions: What new occupations emerged? What technologies generated
them?

⊲ To find new occupations: compare some granular census indexes of occupations (CAI)
in 1940 vs 1930, 1950 vs 1940, ....

⊲ To attach occupation with the exposures with different technologies:
◦ Automation tech: patent data similarity with DOT data
◦ Augmenting tech: patent data similarity with CAI data
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Find New Occupations with Rules, Fuzzy M, and Manual Inspection

"... classifying them as new or not new, using a combination of automated assignment and careful manual revision"

Is it better to use a Generative AI or embeddings?
(And not sure if this is the reason why they had 12 RAs)
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Google Ngram Viewer
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Generate Occupation-level Tech Exposure

Webb (2019)
Kogan et al. (2021)

No explicit explanations on why it works; My guess: DOT is about tasks while CAI titles is about the user
Is it better to use a Generative AI or embeddings or any more explicit ways?
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Estimation
ln𝐸

[
Newtitles𝑗 ,𝑡

]
= 𝛽1AugX𝑗 ,𝑡 +𝛽2AutX𝑗 ,𝑡 +𝛽3

𝐸𝑗 ,𝑡−10∑
𝑗 𝐸𝑗 ,𝑡−10

+ 𝛿𝑡
(
+𝛿𝐽 ,𝑡

)
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A Detour: Kelly et al. (2021)
⊲ Empirical question: How to measure the novelty and impact of technological
innovations in the history using patent text only?

⊲ We can calculate the cosine similarity between any two patents: 𝜌𝑖 , 𝑗 = 𝑉𝑖 ,𝑡 ·𝑉𝑗 ,𝑡

⊲ A measure of "backward similarity": 𝐵𝑆𝜏
𝑗
=

∑
𝑖∈ℬ𝑗 ,𝜏

𝜌 𝑗 ,𝑖

◦ ℬ𝑗 ,𝜏 denotes the set of "prior" patents filed in the 𝜏 years prior to 𝑗’s filing

⊲ A measure of "forward similarity": 𝐹𝑆𝜏
𝑗
=

∑
𝑖∈ℱ𝑗 ,𝜏 𝜌 𝑗 ,𝑖

◦ ℱ𝑗 ,𝜏 denotes the set of "post" patents filed over the next 𝜏 years following 𝑗’s filing

⊲ A measure of patent importance: 𝑞𝜏
𝑗
=

𝐹𝑆𝜏
𝑗

𝐵𝑆𝑗

⊲ Define a "breakthrough" patent if top 10% of the estimated 𝑞𝜏
𝑗
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Breakthrough Innovations Varied in Timing Across Industry
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IV Estimation
Use exposures to breakthroughs 20-years prior as IVs
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Horton (2023): LLMs as Economics Agent for Survey/Experiment
⊲ Empirical question: how would employer pick workers when the MW increased?
⊲ The prompt sent to GPT3: (last part to avoid AI’s lexical preferences with work experience first)

⊲ Vary scenarios in Person 1’s ask wage ($13-19) and if new MW ($15) to generate
samples
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Tranchero et al. (2024): LLM Experiment for Testing Theory (use edsl pkg)

(Instead of Lab Experiment)Vary group size, choices, units, rules,
instructions, agent preferences

Elicit reasoning by direct prompting→ new meachnism
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Why to Use Text-as-Data

⊲ We use text-as-data to study research question of interest otherwise we can’t
◦ i.e. w/o good structured data to answer

⊲ Tradeoff: novel insights vs. native drawbacks or skepticism
◦ Topics already with good data and a strong empirical tradition will lean towards latter

(I feel most pushback on my own work due to this)
◦ The novel insights need to be low-dimensional and interpretable

⊲ E.g. think job ads data has been used in labor economics:
◦ capture skills/tasks/technologies/amenities/discrimination not in census/survey data
◦ often need to justify sample bias, measure errors, strategic behaviors, ...
◦ often as one measure and combined with other census/administrative data

⊲ I guess that’s why we see more flourish in politics, media, ... ?
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Research with Text-as-Data

⊲ In most cases, we are selling our story but not the techniques
◦ A more accurate algorithm to an old question itself does not ensure an economics paper

⊲ Significantly more time to accumulate domain knowledge than to learn NLP tools
◦ Often the key to tell a good story
◦ AI has made the cost related to learning coding minimal
◦ So, if you find some fancy data but don’t have the domain knowledge, better not do it or

find someone knows it well

⊲ Free of entry in data×method combinations
◦ Do it fast and submit it fast
◦ Borrow the ideas from applications in other fields (e.g. finance, management, ...)
◦ Utilizing most advanced techniques is still rare, not sure frictions or equilibrium
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Ways of Using NLP Tools

⊲ Simply use it
◦ try both the classic and recent ones
◦ see which works
◦ a technical tip: often can find highly accelerated pkg for a well-known algorithm

⊲ Select the most suitable methods based on understanding of algorithm and context
◦ even though, degree of freedoms in choosing approaches can be high
◦ it’s often an empirical question
◦ convince people it works with simple facts is better than using sophisticated methods

⊲ Incorporate the mechanism into economics model
◦ e.g. Gentzkow et al. (2019) style
◦ LLM is a new type of probabilistic, generative model w/o explicit rules on DGP
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Appendix



Human-rule-based Representation

⊲ Idea: represent word as a collection of features and relationships to linguistic
categories (grammatical, derivational, semantic) and other words

⊲ E.g.

⊲ Failures compared to data-driven approaches:
◦ updating is costly and they are always incomplete
◦ extremely high dimension (much larger than |𝑉 |) and sparse
◦ human ideas of what the right representations tend to underperform
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Bag-of-words

(Source: Force of LSTM and GRU)
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https://koushik1102.medium.com/nlp-bag-of-words-and-tf-idf-explained-fd1f49dce7c4
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TF-IDF
⊲ Term frequency (TF): 𝑇𝐹𝑑𝑤 ≡ # token 𝑤 in document 𝑑

# tokens in document 𝑑 (frequency)

⊲ Inverse document frequency (IDF): 𝐼𝐷𝐹𝑤 ≡ log
(

# documents in corpus
# documents that include term 𝑤

)
⊲ 𝑇𝐹 − 𝐼𝐷𝐹𝑑𝑤 ≡ 𝑇𝐹𝑑𝑤 × 𝐼𝐷𝐹𝑤

⊲ "Backward-IDF" in Kelly et al. (2021) (𝑝 for patent instead of 𝑑):
𝐵𝐼𝐷𝐹𝑤𝑝 = log

(
# patents prior to 𝑝

1+# documents prior to 𝑝 that include term 𝑤

)
◦ Idea: e.g. Nikola Tesla’s famous 1888 patent introduce the phrase "alternating current,"

which was used in all following work; Standard IDF would sharply deemphasize this term

⊲ 𝑇𝐹𝐵𝐼𝐷𝐹𝑤,𝑖,𝑡 = 𝑇𝐹𝑤,𝑖 × 𝐵𝐼𝐷𝐹𝑤,𝑡 , 𝑡 ≡ min(𝑖 , 𝑗) and likewise for patent 𝑗
◦ Idea: e.g. for a 1990 GM patent of an "alternating current ignition system" (𝑖), and to

compare with the Tesla 1888 patent (𝑗), 𝐵𝐼𝐷𝐹𝑤,𝑡=1990 will deemphasize this term for 𝑖

⊲ Calculate the cosine similarity: 𝜌𝑖 , 𝑗 = 𝑉𝑖 ,𝑡 ·𝑉𝑗 ,𝑡 , where 𝑉𝑘,𝑡 =
𝑇𝐹𝐵𝐼𝐷𝐹𝑘,𝑡

∥𝑇𝐹𝐵𝐼𝐷𝐹𝑘,𝑡 ∥
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Stochastic Gradient Descent
⊲ From the CBOW model, we have the global loss as
minimize 𝐽 =

∑
𝐷1 ,...,𝐷𝑀

∑𝑛
𝑖=1 − log 𝑃 (𝑤𝑖 | 𝑤𝑖−𝑚 , . . . , 𝑤𝑖−1 , 𝑤𝑖+1 , . . . , 𝑤𝑖+𝑚)

⊲ Compute the gradients with respect to the unknown parameters and at each iteration
update them via gradient descent: U(𝑡+1) = U(𝑡) − 𝛼∇U𝐽

(
U(𝑡) ,W(𝑡)

)
⊲ Computing 𝐽(U,W) is however expensive as it walks over the entire dataset

⊲ Instead perform stochastic gradient descent: for each step, approximating 𝐽(U,W)
using a few sampling documents 𝑑1 , . . . , 𝑑ℓ ∼ 𝐷 and computing
𝐽(U,W) = ∑

𝑑1 ,...,𝑑ℓ

∑𝑛
𝑖=1 − log 𝑃U,W

(
𝑤
(𝑑)
𝑖
| c(𝑑)

𝑖

)
and gradients

⊲ Further simplification of the calculation of each 𝑃 involves a technique called negative
sampling to avoid walking over the entire vocabulary in the denominator
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Word2vec: Skip-gram
⊲ For the context: c𝑖 = {𝑤𝑖−𝑚 , . . . , 𝑤𝑖−1 , 𝑤𝑖+1 , . . . , 𝑤𝑖+𝑚}, where 𝑤𝑖 is center word

⊲ The aim is again to find two mappings U ∈ R𝐻×|𝑉 | andW ∈ R|𝑉 |×𝐻

⊲ 𝑢𝑖 = U𝑤𝑖 ∈ Rℎ ; 𝑧 = W𝑢𝑖 ∈ R|𝑉 |; 𝑦̂ = softmax(𝑧) ∈ R|𝑉 |

⊲ Loss function:

𝐽
(𝑑)
𝑖

= − log 𝑃 (𝑤𝑖−𝑚 , . . . , 𝑤𝑖−1 , 𝑤𝑖+1 , . . . , 𝑤𝑖+𝑚 | 𝑤𝑖)

= − log
2𝑚∏

𝑗=0, 𝑗≠𝑚

𝑃
(
𝑤𝑖−𝑚+𝑗 | 𝑤𝑖

)
= − log

2𝑚∏
𝑗=0, 𝑗≠𝑚

exp
(
𝑣𝑇
𝑖−𝑚+𝑗𝑢𝑖

)
∑|𝑉 |

𝑘=1
exp

(
𝑣𝑇
𝑘
𝑢𝑖

)
= −

2𝑚∑
𝑗=0, 𝑗≠𝑚

𝑣𝑇𝑖−𝑚+𝑗𝑢𝑖 + 2𝑚 log

|𝑉 |∑
𝑘=1

exp
(
𝑣𝑇
𝑘
𝑢𝑖

)
◦ 𝑣𝑖 is the corresponding row of token 𝑖 inW
◦ 2nd line invokes a Naive Bayes assumption to break out the probabilities
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GloVe
⊲ LSA is count-based and relies on matrix factorization of global co-occurrence statistics
◦ capture word similarities but do poorly on word analogy

⊲ Word2vex is window-based and makes local predictions in local context windows
◦ capture complex linguistic patterns but fail to use global co-occurrence statistics

⊲ GloVe is a mix of these two:
◦ Recall in skip-gram the global cross-entropy loss is 𝐽 = −∑

𝑖∈ corpus
∑

𝑗∈ context (𝑖) log 𝑦̂𝑖 𝑗 ,
which is same as 𝐽 = −∑|𝑉 |

𝑖=1

∑|𝑉 |
𝑗=1

𝑋𝑖 𝑗 log 𝑦𝑖 𝑗 , where 𝑋𝑖 𝑗 is from co-occurrence matrix
◦ Instead of using the softmax for 𝑦̂, GloVe uses a weighted least square objective

𝐽 =
∑|𝑉 |

𝑖=1

∑|𝑉 |
𝑗=1

𝑓
(
𝑋𝑖 𝑗

) (
𝑣𝑇
𝑗
𝑢𝑖 − log𝑋𝑖 𝑗

)2
◦ This way also avoids the expensive summation required for the denominator of softmax
◦ It was argued to outperform on word analogy and word similarity tasks but see the

debates here and here

⊲ It turns out that all these methods de facto factorize some word-context matrices
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https://nlp.stanford.edu/projects/glove/
https://www.facebook.com/tomas.mikolov/posts/pfbid0avhBpB2WULd3KNtAieyiDCFpP9MQggxW1xSh6RXZDjWF6sGzgpYa638KMAyF75JSl
https://x.com/RichardSocher/status/1736161332259614989
https://proceedings.neurips.cc/paper_files/paper/2014/file/b78666971ceae55a8e87efb7cbfd9ad4-Paper.pdf


Intrinsic Evaluation for Tuning Hyperparameters

(Performance depends on model, corpus size, and vector dimension)
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Intrinsic Evaluation for Tuning Hyperparameters
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Embedding Vectors in Reduced Dimension: Document Similarity
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Activation Functions
⊲ Sigmoid: 𝜎(𝑧) = 1

1+exp(−𝑧) where 𝜎(𝑧) ∈ (0, 1) and 𝜎′(𝑧) = − exp(−𝑧)
1+exp(−𝑧) = 𝜎(𝑧)(1 − 𝜎(𝑧))

⊲ Tanh: tanh(𝑧) = exp(𝑧)−exp(−𝑧)
exp(𝑧)+exp(−𝑧) = 2𝜎(2𝑧) − 1, where tanh(𝑧) ∈ (−1, 1) and

tanh′(𝑧) = 1 − tanh2(𝑧)

⊲ ReLu: rect(𝑧) = max(𝑧, 0) , where rect′(𝑧) =
{
1 : 𝑧 > 0

0 : otherwise
and

rect′(𝑧) =
{
1 : 𝑧 > 0

0 : otherwise

⊲ Leaky ReLU: leaky (𝑧) = max(𝑧, 𝑘 · 𝑧), where 0 < 𝑘 < 1 and

leaky′(𝑧) =
{
1 : 𝑧 > 0

𝑘 : otherwise
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Objective Function for NN
⊲ Maximum margin is a popular optimization objective (error metric) for NNs:
minimize 𝐽 = max (𝑠𝑐 − 𝑠, 0)
◦ 𝑠 is the score for "true" labeled data and 𝑠𝑐 is the score for "false" labeled data
◦ it only cares the the "true" data point have a higher score than the "false" data point and

that the rest does not matter (not like a softmax)

⊲ It is often modified to have a margin of safety: minimize 𝐽 = max (Δ + 𝑠𝑐 − 𝑠, 0)
◦ Δ > 0 to avoid the optimization objective being too risky
◦ Δ can be normalized to 1

⊲ It is popular because we have: 𝜕𝐽
𝜕𝑠 = −

𝜕𝐽
𝜕𝑠𝑐

= −1 when 𝐽 > 0

◦ convenient for calculating loss gradients

⊲ Again, it is common to add an regularization penalty to address overfitting:
𝐽𝑅 = 𝐽 + 𝜆∑𝐿

𝑖=1



𝑊 (𝑖)


𝐹

◦


𝑊 (𝑖)



𝐹
is the Frobenius norm (𝐿2) of the 𝑖-th weight matrix in the network
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Dropout
⊲ Dropout can effectively act as another form of regularization:
◦ during training, randomly "drop" with some probability (1 − 𝑝) a subset of neurons during

each forward/backward pass
◦ during testing, use the full network to compute our predictions

⊲ The result is that the network typically learns more meaningful information
◦ Intuitive reason: essentially it’s training exponentially many smaller networks at once and

averaging over their predictions
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Learning Strategy
⊲ The rate of model parameter updates during training can be controlled using the
learning rate: i.e. 𝛼 in Gradient Descent formulation: 𝜃new = 𝜃old − 𝛼∇𝜃𝐽𝑡(𝜃)

⊲ If 𝛼 is too large:
◦ overshoot the convex minima
◦ diverging loss functions

⊲ If 𝛼 is too low:
◦ not converge in a reasonable amount of time
◦ caught in local minima

⊲ Efficient strategies to tune 𝛼:
◦ scaling by the inverse square root of the fan-in of the neuron
◦ annealing: after several iterations, 𝛼 is reduced in some way
◦ Momentum methods: use the "velocity” of updates as a more effective update scheme
◦ AdaGrad: parameters with a scarce history of updates are updated faster
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Deep Bidirectional RNNs
®ℎ𝑡 = 𝑓

(
®𝑊𝑥𝑡 + ®𝑉 ®ℎ𝑡−1 + ®𝑏

)
←−
ℎ 𝑡 = 𝑓

(←−
𝑊𝑥𝑡 +

←−
𝑉
←−
ℎ 𝑡+1 +

←−
𝑏
)

𝑦̂𝑡 = 𝑔 (𝑈ℎ𝑡 + 𝑐) = 𝑔
(
𝑈

[
®ℎ𝑡 ;
←−
ℎ 𝑡

]
+ 𝑐

)
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RNN Translation Model

ℎ𝑡 = 𝜙 (ℎ𝑡−1 , 𝑥𝑡 ) = 𝑓
(
𝑊 (ℎℎ)ℎ𝑡−1 +𝑊 (ℎ𝑥)𝑥𝑡

)

ℎ𝑡 = 𝜙 (ℎ𝑡−1) = 𝑓
(
𝑊 (ℎℎ)ℎ𝑡−1

)
𝑦𝑡 = softmax

(
𝑊 (𝑆)ℎ𝑡

)
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Training Process of ChatGPT

(source: RLHF: Reinforcement Learning from Human Feedback)

Post-Training
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https://huyenchip.com/2023/05/02/rlhf.html


Model Selection
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Lise and Postel-Vinay (2020): Interpretable PCA
⊲ Say a set of 𝑃 different skill measures observed for 𝑁 occupations

⊲ PCA decomposes the matrixM ∈ R𝑁×𝑃 asM = FL
◦ F ∈ R𝑁×𝑃 is the orthonormal matrix of principal eigenvectors ofMM⊤

◦ L ∈ R𝑃×𝑃 is a matrix of factor loadings
◦ (F ≡ U, L ≡ 𝚺V⊤ in SVDM = U𝚺V⊤)
◦ If use first 3 principal components only, decompose asM = F3L3 +U
◦ F3L3 ∈ R𝑁×𝑃 is the reconstructed raw data based on 3 PCs that capture most variances

but not interpretable

⊲ The decomposition can rewritten asM = (F3L3,3)
(
L−13,3L3

)
+U

◦ F3L3,3 is the loaded principal components based on first three columns ofM
◦ E.g. set 1st vector to mathematics score to only reflect cognitive skill; set 2nd vector to

social perceptiveness score to only reflect interpersonal skill; ...
◦ Exclusion restrictions is achieved as the new loading Lnew3 ≡ L−13,3L3 has its Lnew3,3 to be the

identity matrix
◦ Advantage: no need to decide which measure in 𝑃 belongs to which board category
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Zhu (2023): Variance Decomposition with PLS Variables
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Zhu (2023): Variance Decomposition with Artificial Occupations
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Zhu (2023): Replicate DK2018 with Full Features

(1) (2) (3) (4) (5) (6) (7) (8)
Cognitive .045 .054 .027 .047 .013 .032 .011 .033

(.000) (.001) (.000) (.001) (.000) (.001) (.000) (.001)
Social .035 .041 .030 .045 .020 .033 .025 .041

(.001) (.001) (.001) (.001) (.000) (.001) (.001) (.001)
Both required -.012 -.026 -.024 -.029

(.001) (.001) (.001) (.001)
Ξ𝑔 ,Ξ𝑚 ✓ ✓ ✓ ✓
Ξ𝑠 ✓ ✓ ✓ ✓
Education FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Experience FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Occupation FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adj. R2 .582 .582 .604 .604 .636 .636 .641 .641

84 / 63



Hampole et al. (2025): AI Exposure at Firm-Task Level
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Hansen et al. (2023): Classify Job Ads for WFH (website)
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https://wfhmap.com/


Use ML to Find Novel and Interpretable Hypothesis
⊲ Ludwig and Mullainathan (2024): "Machine Learning as a Tool for Hypothesis
Generation"
◦ Researchers do exploratory "data" analysis to generate hypotheses
◦ ML algorithms help to automatically detect patterns, esp. ones that are never considered
◦ A key challenge: generate human-interpretable hypotheses that are novel & testable

⊲ Their application: Find novel features that explain judge’s jailing decision
1. A DL model finds a striking fact: defendant’s face has large explanatory power
2. Control for all known features to ensure the finding is truely novel
3. Generate synthetic images that vary in new features; Train independent study subjects in

an experimental design; Ask the subjects to name the features ("well-groomed", "heavyfaced")

⊲ Some thoughts: (many are recognized in the paper)
◦ Including facial images as input data is itself a researcher-driven hypothesis
◦ ML/DL works well as the DGP in real world is high dimensional and non-linear
◦ In essence, it’s about utilizing new unstructured data and (human-)interpreting ML results
◦ The interpretation steps are not that different from those in BERTopic
◦ New notions are often distilled by experts but not by people w/o domain knowledge
◦ If new features can be named well, why would they be novel to practitioners?
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Interpret Features of Generative LLMs (but more dark matter)
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https://transformer-circuits.pub/2024/scaling-monosemanticity/
https://www.youtube.com/watch?v=UGO_Ehywuxc


Open the Blackbox of Generative LLMs
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https://transformer-circuits.pub/2025/attribution-graphs/biology.html


Open the Blackbox of Generative LLMs
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https://transformer-circuits.pub/2025/attribution-graphs/biology.html


Is the "dimension reduction" in Economics necessarily?
⊲ Think about LDA vs. Transformers

⊲ Both are probabilistic, generative models

⊲ LDA models the DGP explicitly; Transformers approximate the data distribution
flexibly

⊲ LDA replies on interpretable but simple, arbitrary assumptions on DGP; Transformers
don’t

⊲ Classical DGP: A generative story humans invent to explain phenomena

⊲ Neural DGP: A compressed statistical representation of observed data

⊲ "All models are wrong, some are useful"
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